Skip to main content
Log in

Anion concentration modulates the conformation and stability of the molten globule of cytochrome c

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Anions induce collapse of acid-denatured cytochrome c into a compact state, the A-state, showing molten globule character. Since structural information on partially folded forms of proteins is important for a deeper understanding of folding mechanisms and of the factors affecting protein stabilization, in this paper we have investigated in detail the effects of anions on the tertiary conformation of the A-state. We have found that the salt-induced collapse of acid-denatured cytochrome c leads to a number of equilibria between high-spin and low-spin heme states and between two types of low-spin states. The two latter states are characterized by conformations leading to a native-like Met-Fe-His axial coordination and a bis-His configuration. The equilibrium between these two A-states is dependent on the concentration and/or size of the anions (i.e. the bigger the anion, the greater its effect). Further, on the basis of fast kinetic data, a kinetic model of the folding process from the acid-unfolded protein to the A-state (at low and high anion concentration) is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Scheme 1.
Scheme 2.

Similar content being viewed by others

Abbreviations

cyt c :

cytochrome c

cyt c′′:

cytochrome c′′

LS:

low-spin

HS:

high-spin

RR:

resonance Raman

References

  1. Creighton TE (1990) Biochem J 270:1–15

    CAS  PubMed  Google Scholar 

  2. Baldwin RL (1991) Chemtracts Biochem Mol Biol 2:379–389

    Google Scholar 

  3. Dobson CM (1992) Curr Opin Struct Biol 2:6–12

    Article  Google Scholar 

  4. Nall BT (1996) In: Scott RA, Mauk AG (eds) Cytochrome c. A multidisciplinary approach. University Science Books, Sausalito, Calif., pp 167–200

  5. Takahashi S, Yeh S-R, Das TK, Chan C-K, Gottfried DS, Rousseau DL (1997) Nat Struct Biol 4:44–50

    CAS  PubMed  Google Scholar 

  6. Yeh S-R, Takahashi S, Fan B, Rousseau DL (1997) Nat Struct Biol 4:51–56

    PubMed  Google Scholar 

  7. Kuwajima K (1989) Proteins Struct Funct Genet 6:87–103

    CAS  PubMed  Google Scholar 

  8. Christensen H, Pain RH (1991) Eur Biophys J 19:221–229

    CAS  PubMed  Google Scholar 

  9. Ptitsyn OB (1992) In: Creighton TE (ed) Protein folding. Freeman, New York, pp 243–300

  10. Barrick D, Baldwin RL (1993) Protein Sci 2:869–876

    CAS  PubMed  Google Scholar 

  11. Kuwajima K (1996) FASEB J 10:102–109

    CAS  PubMed  Google Scholar 

  12. Privalov PL (1996) J Mol Biol 258:707–725

    Article  CAS  PubMed  Google Scholar 

  13. Goto Y, Calciano LJ, Fink AL (1990) Proc Natl Acad Sci USA 87:573–577

    CAS  PubMed  Google Scholar 

  14. Goto Y, Takahashi N, Fink AL (1990) Biochemistry 29:3480–3488

    CAS  PubMed  Google Scholar 

  15. Jeng MF, Englander SW, Elove GA, Wand AJ, Roder H (1990) Biochemistry 29:10433–10437

    CAS  PubMed  Google Scholar 

  16. Goto Y, Nishikiori S (1991) J Mol Biol 222:679–686

    CAS  PubMed  Google Scholar 

  17. Kataoka M, Hagihara Y, Mihara K, Goto Y (1993) J Mol Biol 229:591–596

    Article  CAS  PubMed  Google Scholar 

  18. Kuroda Y, Kidokoro S, Wada A (1992) J Mol Biol 223:1139–1153

    CAS  PubMed  Google Scholar 

  19. Jordan T, Eads JE, Spiro TG (1995) Protein Sci 4:716–728

    CAS  PubMed  Google Scholar 

  20. Jeng MF, Englander SW (1991) J Mol Biol 221:1045–1061

    CAS  PubMed  Google Scholar 

  21. Marmorino JL, Pielak GJ (1995) Biochemistry 34:3140–3143

    CAS  PubMed  Google Scholar 

  22. Marmorino JL, Lehti M, Pielak GJ (1998) J Mol Biol 275:379–388

    Article  CAS  PubMed  Google Scholar 

  23. Santucci R, Bongiovanni C, Mei G, Ferri T, Polizio F, Desideri A (2000) Biochemistry 39:12632–12638

    Article  CAS  PubMed  Google Scholar 

  24. Moore GR, Pettigrew GW (1990) Cytochromes c. Evolutionary, structural and physiological aspects. Springer, Berlin Heidelberg New York

  25. Oellerich S, Wackerbarth H, Hildebrandt P (2002) J Phys Chem B 106:6566–6580

    Article  CAS  Google Scholar 

  26. Stellwagen E, Cass R (1974) Biochem Biophys Res Commun 60:371–375

    CAS  PubMed  Google Scholar 

  27. Indiani C, De Sanctis G, Neri F, Santos H, Smulevich G, Coletta M (2000) Biochemistry 39:8234–8242

    Article  CAS  PubMed  Google Scholar 

  28. Spaulding LD, Chang C, Yu N-T, Felton RH (1975) J Am Chem Soc 97:2517–2525

    CAS  Google Scholar 

  29. Choi S, Spiro TG, Langry KC, Smith KM, Budd DL, La Mar GN (1982) J Am Chem Soc 104:4345–4351

    CAS  Google Scholar 

  30. Sparks LD, Anderson KK, Medforth CJ, Smith KM, Shelnutt JA (1994) Inorg Chem 33:2297–2302

    CAS  Google Scholar 

  31. Zheng J, Ye S, Lu T, Cotton TM, Chumanov G (2000) Biopolymers (Biospectroscopy) 57:77–84

    Google Scholar 

Download references

Acknowledgements

This research was funded in part by grants from MIUR (COFIN 2001031798).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Santucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinibaldi, F., Howes, B.D., Smulevich, G. et al. Anion concentration modulates the conformation and stability of the molten globule of cytochrome c . J Biol Inorg Chem 8, 663–670 (2003). https://doi.org/10.1007/s00775-003-0462-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-003-0462-7

Keywords

Navigation