Skip to main content
Log in

Examples of high-frequency EPR studies in bioinorganic chemistry

  • Minireview
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Low-temperature EPR spectroscopy with frequencies between 95 and 345 GHz and magnetic fields up to 12 T has been used to study metal sites in proteins or inorganic complexes and free radicals. The high-field EPR method was used to resolve g-value anisotropy by separating it from overlapping hyperfine couplings. The presence of hydrogen bonding interactions to the tyrosyl radical oxygens in ribonucleotide reductases were detected. At 285 GHz the g-value anisotropy from the rhombic type 2 Cu(II) signal in the enzyme laccase has its g-value anisotropy clearly resolved from slightly different overlapping axial species. Simple metal site systems with S>1/2 undergo a zero-field splitting, which can be described by the spin Hamiltonian \(H_{\rm s} = \beta SgB + D\left[ {S_z^{\rm 2} - S\left( {S + {\rm 1}} \right){\rm /3} + \left( {E{\rm /}D} \right)\left( {S_x^{\rm 2} - S_y^{\rm 2} } \right)} \right]\). From high-frequency EPR, the D values that are small compared to the frequency (high-field limit) can be determined directly by measuring the distance of the outermost signal to the center of the spectrum, which corresponds to (2S−1)* ∣D∣. For example, D values of 0.8 and 0.3 cm−1 are observed for S=5/2 Fe(III)-EDTA and transferrin, respectively. When D values are larger compared to the frequency and in the case of half-integer spin systems, they can be obtained from the frequency dependence of the shifts of g eff, as observed for myoglobin in the presence (D=5 cm−1) or absence (D=9.5 cm−1) of fluoride. The 285 and 345 GHz spectra of the Fe(II)-NO-EDTA complex show that it is best described as a S=3/2 system with D=11.5 cm−1, E=0.1 cm−1, and g x =g y =g z =2.0. Finally, the effects of HF-EPR on X-band EPR silent states and weak magnetic interactions are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  1. Barra AL, Brunel LC, Gatteschi D, Pardi L, Sessoli R (1998) Acc Chem Res 31:460–466

    Article  CAS  Google Scholar 

  2. Brunel LC (1996) Appl Magn Reson 11:417–423

    CAS  Google Scholar 

  3. Mobius K (1993) Appl Magn Reson 9:389–407

    Google Scholar 

  4. Borbat PP, Costa-Filho AJ, Earle KA, Moscicki JK, Freed JH (2001) Science 291:266–269

    Article  CAS  PubMed  Google Scholar 

  5. Barra AL, Caneschi A, Gatteschi D, Sessoli R (1995) J Am Chem Soc 117:8855–8856

    CAS  Google Scholar 

  6. Barra AL, Gatteschi D, Sessoli R, Abbati GL, Cornia A, Fabretti AC, Uytterhoeven MG (1997) Angew Chem Int Ed Engl 36:2329–2331

    CAS  Google Scholar 

  7. Levanon H, Mobius K (1997) Annu Rev Biophys Biomol Struct 26:495–540

    Article  CAS  PubMed  Google Scholar 

  8. Reijerse EJ, van Dam PJ, Klaassen AAK, Hagen WR, van Bentum PJM, Smith GM (1998) Appl Magn Reson 14:153–167

    CAS  Google Scholar 

  9. Tesler J, Pardi LA, Krzystek J, Brunel LC (1998) Inorg Chem 37:5769–5775

    Article  Google Scholar 

  10. van Dam PJ, Klaassen AAK, Reijerse EJ, Hagen WR (1998) J Magn Reson 130:140–144

    Article  PubMed  Google Scholar 

  11. Lubitz W, Feher G (1999) Appl Magn Reson 17:1–48

    CAS  Google Scholar 

  12. Hagen WR (1999) Coord Chem Rev 192:209–229

    Article  Google Scholar 

  13. Krzystek J, Telser J, Pardi LA, Goldberg DP, Hoffman BM, Brunel LC (1999) Inorg Chem 38:6121–6129

    Article  CAS  PubMed  Google Scholar 

  14. Bennati M, Farrar CT, Bryant JA, Inati SJ, Weis V, Gerfen GJ, Riggs-Gelasco P, Stubbe J, Griffin RG (1999) J Magn Reson 138:232–243

    Article  CAS  PubMed  Google Scholar 

  15. Barnes JP, Liang ZC, Mchaourab HS, Freed JH, Hubbell WL (1999) Biophys J 76:3298–3306

    CAS  PubMed  Google Scholar 

  16. Barra AL, Brunel LC, Baumann F, Schwach M, Moscherosch M, Kaim W (1999) J Chem Soc Dalton Trans 3855–3857

  17. Arieli D, Vaughan DEW, Strohmaier KG, Thomann H, Bernardo M, Goldfarb D (1999) Magn Reson Chem 37:S43–S54

    Article  CAS  Google Scholar 

  18. Freed JH (2000) Annu Rev Phys Chem 51:655–689

    Article  CAS  PubMed  Google Scholar 

  19. Bratt PJ, Poluektov OG, Thurnauer MC, Krzystek J, Brunel LC, Schrier J, Hsiao YW, Zerner M, Angerhofer A (2000) J Phys Chem B 104:6973–6977

    Article  CAS  Google Scholar 

  20. Mobius K (2000) Chem Soc Rev 29:129–139

    Article  CAS  Google Scholar 

  21. Barra AL, Gatteschi D, Sessoli R (2000) Chem Eur J 6:1608–1614

    Article  CAS  Google Scholar 

  22. DubocToia C, Hummel H, Bill E, Barra AL, Chouteau G, Wieghardt K (2000) Angew Chem Int Ed Engl 39:2888–2890

    Article  CAS  PubMed  Google Scholar 

  23. Krzystek J, Telser J, Hoffman BM, Brunel LC, Licoccia S (2001) J Am Chem Soc 123:7890–7897

    Article  CAS  PubMed  Google Scholar 

  24. Mossin S, Stefan M, ter Heerdt P, Bouwen A, Goovaerts E, Weihe H (2001) Appl Magn Reson 21:587–597

    CAS  Google Scholar 

  25. Gerfen GJ, Bellew BF, Un S, Bollinger JM, Stubbe J, Griffin RG, Singel DJ (1993) J Am Chem Soc 115:6420–6421

    CAS  Google Scholar 

  26. Andersson KK, Gräslund A (1995) Adv Inorg Chem 43:359–408

    CAS  Google Scholar 

  27. Sjöberg BM (1997) Struct Bonding 88:139–173

    Google Scholar 

  28. Jordan A, Reichard P (1998) Annu Rev Chem 67:71–98

    Article  CAS  Google Scholar 

  29. Stubbe J, Ge J, Yee CS (2001) Trends Biochem Sci 26:93–99

    Article  CAS  PubMed  Google Scholar 

  30. Eklund H, Uhlin U, Färnegårdh M, Logan DT, Nordlund P (2001) Prog Biophys Mol Biol 77:177–268

    Article  CAS  Google Scholar 

  31. Lawrence CC, Bennati M, Obias HY, Bar G, Griffin RG, Stubbe J (1999) Proc Natl Acad Sci USA 96:8979–8984

    Article  CAS  PubMed  Google Scholar 

  32. Kolberg M, Bleifuss G, Pötsch S, Gräslund A, Lubitz W, Lassmann G, Lendzian F (2000) J Am Chem Soc 122:9856–9857

    Article  CAS  Google Scholar 

  33. Albert Y, Couder Y, Tuchendler J, Thome H (1973) Biochim Biophys Acta 322:34–37

    PubMed  Google Scholar 

  34. Gaffney BJ, Silverstone HJ (1993) Biol Magn Reson 13:1–55

    CAS  Google Scholar 

  35. Un S, Tang XS, Diner BA (1996) Biochemistry 35:679–684

    Article  CAS  PubMed  Google Scholar 

  36. Bratt PJ, Rohrer M, Krzystek J, Evans MCW, Brunel LC, Angerhofer A (1997) J Phys Chem 101:9686–9689

    Article  CAS  Google Scholar 

  37. Calvo R, Isaacson RA, Paddock ML, Abresch EC, Okamura MY, Maniero AL, Brunel LC, Feher G (2001) J Phys Chem 105:4053–4057

    Article  CAS  Google Scholar 

  38. Lakshmi KV, Reifler MJ, Brudvig GW, Poluektov OG, Wagner AM, Thurnauer MC (2000) J Phys Chem B 104:10445–10448

    Article  CAS  Google Scholar 

  39. Un S, Dorlet P, Rutherford AW (2001) Appl Magn Reson 21:341–361

    CAS  Google Scholar 

  40. Smith GM, Riedi PC (2000) In: Atherton NM, Davies MJ, Gilbert BC (eds) Electron paramagnetic resonance, vol 17. Royal Society of Chemistry, Cambridge, pp 164–197

  41. Muller F, Hopkins MA, Coron N, Grynberg M, Brunel LC, Martinez G (1989) Rev Sci Instrum 60:3681–3684

    Article  CAS  Google Scholar 

  42. Barra AL, Brunel LC, Robert JB (1990) Chem Phys Lett 165:107–109

    Article  CAS  Google Scholar 

  43. Manikandan P, Epel B, Goldfarb D (2001) Inorg Chem 40:781–787

    Article  CAS  PubMed  Google Scholar 

  44. Allard P, Barra AL, Andersson KK, Schmidt PP, Atta M, Gräslund A (1996) J Am Chem Soc 118:895–896

    Article  CAS  Google Scholar 

  45. Un S, Atta M, Fontecave M, Rutherford AW (1995) J Am Chem Soc 117:10713–10719

    CAS  Google Scholar 

  46. Ivancich A, Mattioli TA, Un S (1999) J Am Chem Soc 121:5743–5753

    Article  CAS  Google Scholar 

  47. Un S, Gerez C, Elleingand E, Fontecave M (2001) J Am Chem Soc 123:3048–3054

    Article  CAS  PubMed  Google Scholar 

  48. Schmidt PP, Andersson KK, Barra AL, Thelander L, Gräslund A (1996) J Biol Chem 271:23615–23618

    Article  CAS  PubMed  Google Scholar 

  49. Schmidt PP, Schünemann V, Hanson MA, Katterle B, Gunnlaugsson PG, Barra AL, Sjöberg BM, Gräslund A, Solomon EI, Trautwein AX, Andersson KK (2003) J Am Chem Soc (in press)

  50. Katterle B, Sahlin M, Schmidt PP, Pötsch S, Logan DT, Gräslund A, Sjöberg BM (1997) J Biol Chem 272:10414–10421

    Article  CAS  PubMed  Google Scholar 

  51. van Dam PJ, Willems JP, Schmidt PP, Pötsch S, Barra AL, Hagen WR, Hoffman BM, Andersson KK, Gräslund A (1998) J Am Chem Soc 120:5080–5088

    Article  Google Scholar 

  52. Hanson MA, Schmidt PP, Strand KR, Gräslund A, Solomon EI, Andersson KK (1999) J Am Chem Soc 121:6755–6756

    Article  CAS  Google Scholar 

  53. Liu A, Pötsch S, Davydov A, Barra AL, Rubin H, Gräslund A (1998) Biochemistry 37:16369–16377

    Article  CAS  PubMed  Google Scholar 

  54. Chabes A, Domkin V, Larsson G, Liu AM, Gräslund A, Wijmenga S, Thelander L (2000) Proc Natl Acad Sci USA 97:2474–2479

    Article  CAS  PubMed  Google Scholar 

  55. Liu AM, Barra AL, Rubin H, Lu GZ, Gräslund A (2000) J Am Chem Soc 122:1974–1978

    Article  CAS  Google Scholar 

  56. Bar G, Bennati M, Nguyen HHT, Ge J, Stubbe J, Griffin RG (2001) J Am Chem Soc 123:3569–3576

    Article  CAS  PubMed  Google Scholar 

  57. Ivancich A, Dorlet P, Goodin DB, Sun U (2001) J Am Chem Soc 123:5050–5058

    Article  CAS  PubMed  Google Scholar 

  58. Bleifuss G, Kolberg M, Pötsch S, Hofbauer W, Bittl R, Lubitz W, Gräslund A, Lassmann G, Lendzian F (2001) Biochemistry 40:15362–15368

    Article  CAS  PubMed  Google Scholar 

  59. Burdi D, Sturgeon BE, Tong WH, Stubbe J, Hoffman BM (1996) J Am Chem Soc 118:281–282

    Article  CAS  Google Scholar 

  60. Assarsson M, Andersson ME, Högbom M, Persson BO, Sahlin M, Barra AL, Sjöberg BM, Nordlund P, Gräslund A (2001) J Biol Chem 276:26852–26859

    Article  CAS  PubMed  Google Scholar 

  61. Solomon EI, Sundaram UM, Machonkin TE (1996) Chem Rev 96:2563–2606

    CAS  PubMed  Google Scholar 

  62. Sundaram UM, Zhang HH, Hedman B, Hodgson KO, Solomon EI (1997) J Am Chem Soc 117:12525–12540

    Article  Google Scholar 

  63. Andersson KK, Barra AL (2002) Spectrochim Acta A 58:1101–1112

    Article  Google Scholar 

  64. Messerschmidt A, Ladenstein R, Huber R, Bolognesi M, Avigliano L, Petruzzelli R, Rossi A, Finazziagro A (1992) J Mol Biol 224:179–205

    CAS  PubMed  Google Scholar 

  65. van Gastel M, Canters GW, Krupka H, Messerschmidt A, de Waal EC, Warmerdam GCM, Groenen EJJ (2001) J Am Chem Soc 122:2322–2328

    Google Scholar 

  66. Berthold T, Bechtold M, Heinen U, Link G, Poluektov O, Utschig L, Tang J, Thurnauer MC, Kothe G (1999) J Phys Chem B 103:10733–10736

    Article  CAS  Google Scholar 

  67. Slutter CE, Gromov I, Epel B, Pecht I, Richards JH, Goldfarb D (2001) J Am Chem Soc 123:5325–5336

    Article  CAS  PubMed  Google Scholar 

  68. Link G, Berthold T, Bechtold M, Weidner JU, Ohmes E, Tang J, Poluektov O, Utschig L, Schlesselman SL, Thurnauer MC, Kothe G (2001) J Am Chem Soc 123:4211–4222

    Article  CAS  PubMed  Google Scholar 

  69. van Kan PJM, van der Horst E, Reijerse EJ, van Bentum PJM, Hagen WR (1998) J Chem Soc Faraday Trans 94:2975–2978

    Article  Google Scholar 

  70. Fann YC, Ong JL, Nocek JM, Hoffman BM (1995) J Am Chem Soc 117:6109–6116

    CAS  Google Scholar 

  71. Slappendel S, Veldink GA, Vliegenthart JFG, Aasa R, Malmström BG (1980) Biochim Biophys Acta 624:30–39

    CAS  PubMed  Google Scholar 

  72. Hagen WR (1992) Adv Inorg Chem 38:165–221

    CAS  Google Scholar 

  73. Glerup J, Weihe H (1991) Acta Chem Scand 45:444–448

    CAS  Google Scholar 

  74. Jacobsen CJH, Perdersen E, Villadsen J, Weihe H (1993) Inorg Chem 32:1216–1221

    CAS  Google Scholar 

  75. Andersson KK, Barra AL (2001) J Inorg Biochem 86:124

    Google Scholar 

  76. Schmidt PP, Martinez A, Barra AL, Flatmark T, Andersson KK (1999) J Inorg Biochem 74:289

    Google Scholar 

  77. Pardi LA, Krzystek J, Telser J, Brunel LC (2000) J Magn Reson 146:375–378

    Article  CAS  PubMed  Google Scholar 

  78. Barra AL, Andersson KK (2002) In: Grenoble High Magnetic Field Laboratory Annual Report 2001 (http://ghmfl.polycnrs-gre.fr/totalescience.htm), p 73

  79. Barra AL, Gräslund A, Andersson KK (2003) Biol Magn Reson (in press)

  80. Arciero DM, Lipscomb JD, Huynh BH, Kent TA, Münck E (1983) J Biol Chem 24:14981–14991

    Google Scholar 

  81. Arciero DM, Lipscomb JD (1986) J Biol Chem 261:2170–2178

    CAS  PubMed  Google Scholar 

  82. Orville AM, Chen VJ, Kriauciunas A, Harpel MR, Fox BG, Munck E, Lipscomb JD (1992) Biochemistry 31:4602–4612

    PubMed  Google Scholar 

  83. Orville AM, Lipscomb JD (1993) J Biol Chem 268:8596–8607

    CAS  PubMed  Google Scholar 

  84. Hauser C, Glaser T, Bill E, Weyhermüller T, Wieghardt K (2000) J Am Chem Soc 122:4352–4365

    Article  CAS  Google Scholar 

  85. Westcott BL, Enemark JH (1999) In: Solomon EI, Lever ABP (eds) Inorganic electronic structure and spectroscopy, vol II. Wiley, New York, pp 403–450

  86. Brown CA, Pavlosky MA, Westre TE, Zhang Y, Hedman B, Hodgson KO, Solomon EI (1995) J Am Chem Soc 117:715–732

    CAS  Google Scholar 

  87. Lynch WB, Boorse RS, Freed JH (1993) J Am Chem Soc 115:10909–10915

    CAS  Google Scholar 

  88. Schmidt PP, Toft KG, Skotland T, Andersson KK (2002) J Biol Inorg Chem 7:225–240

    Article  PubMed  Google Scholar 

  89. Wood RM, Stucker DM, Jones LM, Lynch WB, Misra SK, Freed JH (1999) Inorg Chem 38:5384–5388

    Article  CAS  Google Scholar 

  90. Bellew BF, Halkides CJ, Gerfen GJ, Griffin RG, Singel DJ (1996) Biochemistry 35:12186–12193

    Article  CAS  PubMed  Google Scholar 

  91. Policar C, Knupling M, Frapart YM, Un S (1998) J Phys Chem 102:10391–10398

    Article  CAS  Google Scholar 

  92. Un S, Dorlet P, Voyard G, Tabares LC, Cortez N (2001) J Am Chem Soc 123:10123–10124

    Article  CAS  PubMed  Google Scholar 

  93. Goldberg DP, Telser J, Montalban AG, Brunel LC, Barrett AGM, Hoffman BM (1997) J Am Chem Soc 119:8722–8723

    Article  CAS  Google Scholar 

  94. Krzystek J, Pardi LA, Brunel LC, Goldberg DP, Hoffman BM, Licoccia S, Telser J (2002) Spectrochim Acta A 58:1113–1127

    Article  CAS  Google Scholar 

  95. Knapp MJ, Krzystek J, Brunel LC, Hendrickson DN (2000) Inorg Chem 39:281–288

    Article  CAS  PubMed  Google Scholar 

  96. Fournel A, Gambarelli S, Guigliarelli B, More C, Asso M, Chouteau G, Hille R, Bertrand P (1998) J Chem Phys 24:10905–10913

    Article  Google Scholar 

  97. Käss H, MacMillan F, Ludwig B, Prisner TF (2000) J Phys Chem B 104:5362–5371

    Article  Google Scholar 

  98. Hofbauer W, Zouni A, Bittl R, Kern J, Orth P, Lendzian F, Fromme P, Witt HT, Lubitz W (2001) Proc Natl Acad Sci USA 98:6623–6629

    Article  CAS  PubMed  Google Scholar 

  99. Calvo R, Abresch EC, Bittl R, Feher G, Hofbauer W, Isaacson RA, Lubitz W, Okamura MY, Paddock ML (2000) J Am Chem Soc 122:7327–7341

    Article  CAS  Google Scholar 

  100. van Gastel M, Boulanger MJ, Canters GW, Huber M, Murphy MEP, Verbeet MP, Groenen EJJ (2001) J Phys Chem B 105:2236–2243

    Article  Google Scholar 

  101. Zech SG, Hofbauer W, Kamlowski A, Fromme P, Stehlik D, Lubitz W, Bittl R (2000) J Phys Chem B 104:9728–9739

    Article  CAS  Google Scholar 

  102. Manikandan P, Carmieli R, Shane T, Kalb AJ, Goldfarb, D (2000) J Am Chem Soc 122:3488–3494

    Article  CAS  Google Scholar 

Download references

Acknowledgements

High-field EPR measurements were carried out in the Grenoble High Magnetic Field Laboratory, CNRS-MPIF, supported by the EU TMR programme under contract no. ERBFMGECT950077 and the "Access to research infrastructure of the improving human potential programme". This work was partly financed by the Norwegian Research Council (K.K.A.), the Norwegian Cancer Society (K.K.A.), the EU TMR programme no. ERBMRFXCT980207 (K.K.A.), and ERBFMBICT 961892 (P.P.S.), NIH grant DK31450 (E.I.S.), and NIH grant GM40392 (E.I.S.), and the Swedish Research Council (A.G.). Prof. John D. Lipscomb (University of Minnesota) is thanked for providing samples for measurements and interesting suggestions. Profs. Patrick Bertrand (CNRS, UPR 9036, Marseille) and Joshua Telser (Roosevelt University, Chicago) are thanked for the use of figures and Høgni Weihe (University of Copenhagen) for the simulation program and Dr. Matthias Kolberg (University of Oslo) for fine suggestions. Prof. Britt-Marie Sjöberg (Stockholm University) is thanked for the use of the E. coli RNR-R2 samples in Fig. 2. Prof. Lawrence Que, Jr is thanked for constructive editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kristoffer Andersson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, K.K., Schmidt, P.P., Katterle, B. et al. Examples of high-frequency EPR studies in bioinorganic chemistry. J Biol Inorg Chem 8, 235–247 (2003). https://doi.org/10.1007/s00775-002-0429-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-002-0429-0

Keywords

Navigation