Skip to main content
Log in

Effects of ligandrol as a selective androgen receptor modulator in a rat model for osteoporosis

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

The selective androgen receptor modulator ligandrol (LGD-4033 or VK5211) has been shown to improve muscle tissue. In the present study, the effect of ligandrol on bone tissue was investigated in ovariectomized rat model.

Materials and methods

Three-month-old Sprague Dawley rats were either ovariectomized (OVX, n = 60) or left intact (NON-OVX, n = 15). After 9 weeks, OVX rats were divided into four groups: untreated OVX (n = 15) group and three OVX groups (each of 15 rats) treated with ligandrol orally at doses of 0.03, 0.3, or 3 mg/kg body weight. After five weeks, lumbar vertebral bodies (L), tibiae, and femora were examined using micro-computed tomographical, biomechanical, ashing, and gene expression analyses.

Results

In the 3-mg ligandrol group, bone structural properties were improved (trabecular number: 38 ± 8 vs. 35 ± 7 (femur), 26 ± 7 vs. 22 ± 6 (L), 12 ± 5 vs. 6 ± 3 (tibia) and serum phosphorus levels (1.81 ± 0.17 vs.1.41 ± 0.17 mmol/l), uterus (0.43 ± 0.04 vs. 0.11 ± 0.02 g), and heart (1.13 ± 0.11 vs. 1.01 ± 0.08 g) weights were increased compared to the OVX group. Biomechanical parameters were not changed. Low and medium doses did not affect bone tissue and had fewer side effects. Body weight and food intake were not affected by ligandrol; OVX led to an increase in these parameters and worsened all bone parameters.

Conclusion

Ligandrol at high dose showed a subtle anabolic effect on structural properties without any improvement in biomechanical properties of osteoporotic bones. Considering side effects of ligandrol at this dose, its further investigation for the therapy of postmenopausal osteoporosis should be reevaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AP:

Alkaline phosphatase

BMD:

Bone mineral density

BV/TV:

Bone volume density

BW:

Body weight

CTX-1:

Cross-linked C-telopeptide of type I collagen

Ct. BMD:

Cortical BMD

Ct. DN:

Cortical density

ERα:

Estrogen receptor alpha

Fmax:

Maximal load

OC:

Osteocalcin

OPG:

Osteoprotegerin

OVX:

Ovariectomy

RANKL:

Receptor activator of NF-κB ligand

S-4:

S-3-(4-acetylamino-phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethylphenyl)propionamide

SARM:

Selective androgen receptor modulator

SERM:

Selective estrogen receptor modulator

Tb. BMD:

Trabecular BMD

Tb. Dn:

Trabecular density

TRAP:

Tartrate-resistant acid phosphatase

Tb.Nd:

Number of trabecular nodes

Tb.Th:

Trabecular thickness

References

  1. Osterkamp R (2005) Population developments in Germany until 2050. Chirurg 76:10–18

    Article  CAS  PubMed  Google Scholar 

  2. Popp AW, Zysset PK, Lippuner K (2016) Rebound-associated vertebral fractures after discontinuation of denosumab-from clinic and biomechanics. Osteoporos Int 27:1917–1921

    Article  CAS  PubMed  Google Scholar 

  3. Reginster JY, Brandi ML, Cannata-Andía J, Cooper C, Cortet B, Feron JM, Genant H, Palacios S, Ringe JD, Rizzoli R (2015) The position of strontium ranelate in today’s management of osteoporosis. Osteoporos Int 26:1667–1671

    Article  CAS  PubMed  Google Scholar 

  4. Muchmore DB (2000) Raloxifene: a selective estrogen receptor modulator (SERM) with multiple target system effects. Oncologist 5:388–392

    Article  CAS  PubMed  Google Scholar 

  5. Ettinger B, Black DM, Mitlak BH, Knickerbocker RK, Nickelsen T, Genant HK, Christiansen C, Delmas PD, Zanchetta JR, Stakkestad J, Glüer CC, Krueger K, Cohen FJ, Eckert S, Ensrud KE, Avioli LV, Lips P, Cummings SR (1999) Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA 282:637–645

    Article  CAS  PubMed  Google Scholar 

  6. An KC (2016) Selective esrogen receptor modulators. Asian Spine J 10:787–791

    Article  PubMed  PubMed Central  Google Scholar 

  7. Anderson FH, Francis RM, Faulkner K (1996) Androgen supplementation in eugonadal men with osteoporosis-effects of 6 months of treatment on bone mineral density and cardiovascular risk factors. Bone 18:171–177

    Article  CAS  PubMed  Google Scholar 

  8. Lecka-Czernik B, Rosen CJ, Kawai M (2010) Skeletal aging and the adipocyte program: new insights from an “old” molecule. Cell Cycle 9:3648–3654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Otto-Duessel M, He M, Jones JO (2012) Tissue-selective regulation of androgen-responsive genes. Endocr Res 37:203–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dobs AS, Boccia RV, Croot CC, Gabrail NY, Dalton JT, Hancock ML, Johnston MA, Steiner MS (2013) Effects of enobosarm on muscle wasting and physical function in patients with cancer: a double-blind, randomised controlled phase 2 trial. Lancet Oncol 14:335–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dalton JT, Barnette KG, Bohl CE, Hancock ML, Rodriguez D, Dodson ST, Morton RA, Steiner MS (2011) The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: results of a double-blind, placebo-controlled phase II trial. J Cachexia Sarcopenia Muscle 2:153–161

    Article  PubMed  PubMed Central  Google Scholar 

  12. Girgis CM, Mokbel N, Digirolamo DJ (2014) Therapies for musculoskeletal disease: can we treat two birds with one stone? Curr Osteoporos Rep 12:142–153

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kearbey JD, Gao W, Narayanan R, Fisher SJ, Wu D, Miller DD, Dalton JT (2007) Selective androgen receptor modulator (SARM) treatment prevents bone loss and reduces body fat in ovariectomized rats. Pharm Res 24:328–335

    Article  CAS  PubMed  Google Scholar 

  14. Kearbey JD, Gao W, Fisher SJ, Wu D, Miller DD, Dalton JT (2009) Effects of selective androgen receptor modulator (SARM) treatment in osteopenic female rats. Pharm Res 26:2471–2477

    Article  CAS  PubMed  Google Scholar 

  15. Vajda EG, Hogue A, Griffiths KN, Chang WY, Burnett K, Chen Y, Marschke K, Mais DE, Pedram B, Shen Y, van Oeveren A, Zhi L, López FJ, Meglasson MD (2009) Combination treatment with a selective androgen receptor modulator q(SARM) and a bisphosphonate has additive effects in osteopenic female rats. J Bone Miner Res 24:231–240

    Article  CAS  PubMed  Google Scholar 

  16. Hoffmann DB, Komrakova M, Pflug S, von Oertzen M, Saul D, Weiser L, Walde TA, Wassmann M, Schilling AF, Lehmann W, Sehmisch S (2019) Evaluation of ostarine as a selective androgen receptor modulator in a rat model of postmenopausal osteoporosis. J Bone Miner Metab 37:243–255

    Article  CAS  PubMed  Google Scholar 

  17. Jones A, Hwang DJ, Duke CB 3rd, He Y, Siddam A, Miller DD, Dalton JT (2010) Nonsteroidal selective androgen receptor modulators enhance female sexual motivation. J Pharmacol Exp Ther 334:439–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Furuya K, Yamamoto N, Ohyabu Y, Morikyu T, Ishige H, Albers M, Endo Y (2013) Mechanism of the tissue-specific action of the selective androgen receptor modulator S-101479. Biol Pharm Bull 36:442–451

    Article  CAS  PubMed  Google Scholar 

  19. Basaria S, Collins L, Dillon EL, Orwoll K, Storer TW, Miciek R, Ulloor J, Zhang A, Eder R, Zientek H, Gordon G, Kazmi S, Sheffield-Moore M, Bhasin S (2013) The safety, pharmacokinetics, and effects of LGD-4033, a novel nonsteroidal oral, selective androgen receptor modulator, in healthy young men. J Gerontol A Biol Sci Med Sci 68:87–95

    Article  CAS  PubMed  Google Scholar 

  20. Roch PJ, Henkies D, Carstens JC, Krischek C, Lehmann W, Komrakova M, Sehmisch S (2020) Ostarine and ligandrol improve muscle tissue in an ovariectomized rat model. Front Endocrinol (Lausanne) 11:556581. https://doi.org/10.3389/fendo.2020.556581

    Article  PubMed  Google Scholar 

  21. Fragkaki AG, Sakellariou P, Kiousi P, Kioukia-Fougia N, Tsivou M, Petrou M, Angelis Y (2018) Human in vivo metabolism study of LGD-4033. Drug Test Anal 10:1635–1645

    Article  CAS  PubMed  Google Scholar 

  22. Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15:175–191

    Article  CAS  PubMed  Google Scholar 

  23. Wagener F, Guddat S, Görgens C, Angelis YS, Petrou M, Lagojda A, Kühne D, Thevis M (2022) Investigations into the elimination profiles and metabolite ratios of micro-dosed selective androgen receptor modulator LGD-4033 for doping control purposes. Anal Bioanal Chem 414:1151–1162

    Article  CAS  PubMed  Google Scholar 

  24. Komrakova M, Hoffmann DB, Nuehnen V, Stueber H, Wassmann M, Wicke M, Tezval M, Stuermer KM, Sehmisch S (2016) The effect of vibration treatments combined with teriparatide or strontium ranelate on bone healing and muscle in ovariectomized rats. Calcif Tissue Int 99:408–422

    Article  CAS  PubMed  Google Scholar 

  25. Sehmisch S, Erren M, Rack T, Tezval M, Seidlova-Wuttke D, Richter J, Wuttke W, Stuermer KM, Stuermer EK (2009) Short-term effects of parathyroid hormone on rat lumbar vertebrae. Spine (Phila Pa 1976) 34:2014–2021

    Article  PubMed  Google Scholar 

  26. Tezval M, Stuermer EK, Sehmisch S, Rack T, Stary A, Stebener M, Konietschke F, Stuermer KM (2010) Improvement of trochanteric bone quality in an osteoporosis model after short-term treatment with parathyroid hormone: a new mechanical test for trochanteric region of rat femur. Osteoporos Int 21:251–261

    Article  CAS  PubMed  Google Scholar 

  27. Stürmer EK, Seidlová-Wuttke D, Sehmisch S, Rack T, Wille J, Frosch KH, Wuttke W, Stürmer KM (2006) Standardized bending and breaking test for the normal and osteoporotic metaphyseal tibias of the rat: effect of estradiol, testosterone, and raloxifene. J Bone Miner Res 21:89–96

    Article  PubMed  Google Scholar 

  28. Albers J, Markus MA, Alves F, Dullin C (2018) X-ray based virtual histology allows guided sectioning of heavy ion stained murine lungs for histological analysis. Sci Rep 8:7712

    Article  PubMed  PubMed Central  Google Scholar 

  29. Saul D, Hohl FE, Franz MK, Meyer I, Taudien S, Roch PJ, Sehmisch S, Komrakova M (2021) Inhibition of lipoxygenases showed no benefit for the musculoskeletal System in Estrogen Deficient Rats. Front Endocrinol (Lausanne) 12:706504. https://doi.org/10.3389/fendo.2021.706504

    Article  PubMed  Google Scholar 

  30. Tezval M, Hansen S, Schmelz U, Komrakova M, Stuermer KM, Sehmisch S (2014) Effect of Urocortin on strength and microarchitecture of osteopenic rat femur. J Bone Miner Metab 33:154–160

    Article  PubMed  Google Scholar 

  31. Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28:2–17

    Article  PubMed  Google Scholar 

  32. CEN (2002) European committee for standardization. Determination of calcium and magnesium. EN ISO 7980. https://www.iso.org/standard/14972.html.

  33. CEN (2004) European committee for standardization. Determination of orthophosphate. EN ISO 6878. https://standards.iteh.ai/catalog/standards/cen/b7cc71c5-a6c5-4314-9547-d2054be03b72/en-iso-15681-2-2004.

  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  35. Komrakova M, Büchler G, Böker KO, Lehmann W, Schilling AF, Roch PJ, Taudien S, Hoffmann DB, Sehmisch S (2022) A combined treatment with selective androgen and estrogen receptor modulators prevents bone loss in orchiectomized rats. J Endocrinol Invest 45:2299–2311

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li L, Chen X, Lv S, Dong M, Zhang L, Tu J, Yang J, Zhang L, Song Y, Xu L, Zou J (2014) Influence of exercise on bone remodeling-related hormones and cytokines in ovariectomized rats: a model of postmenopausal osteoporosis. PLoS ONE. https://doi.org/10.1371/journal.pone.0112845

    Article  PubMed  PubMed Central  Google Scholar 

  37. Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13:227–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Masrour Roudsari J, Mahjoub S (2012) Quantification and comparison of bone-specific alkaline phosphatase with two methods in normal and paget’s specimens. Caspian J Intern Med 3:478–483

    PubMed  PubMed Central  Google Scholar 

  39. Scialla JJ, Wolf M (2014) Roles of phosphate and fibroblast growth factor 23 in cardiovascular disease. Nat Rev Nephrol 10:268–278

    Article  CAS  PubMed  Google Scholar 

  40. Goretti Penido M, Alon US (2012) Phosphate homeostasis and its role in bone health. Pediatr Nephrol 27:2039–2048

    Article  PubMed  Google Scholar 

  41. Quarles LD (2003) FGF23, PHEX, and MEPE regulation of phosphate homeostasis and skeletal mineralization. Am J Physiol Endocrinol Metab 285:E1–E9

    Article  CAS  PubMed  Google Scholar 

  42. Takakura A, Takao-Kawabata R, Isogai Y, Kajiwara M, Murayama H, Ejiri S, Ishizuya T (2016) Differences in vertebral, tibial, and iliac cancellous bone metabolism in ovariectomized rats. J Bone Miner Metab 34:291–302

    Article  CAS  PubMed  Google Scholar 

  43. Simitsidellis I, Esnal Zufiaurre A, Kelepouri O, O’Flaherty E, Gibson DA, Saunders PT (2019) Selective androgen receptor modulators (SARMs) have specific impacts on the mouse uterus. J Endocrinol 242:227–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McElroy JF, Wade GN (1987) Short- and long-term effects of ovariectomy on food intake, body weight, carcass composition, and brown adipose tissue in rats. Physiol Behav 39:361–365

    Article  CAS  PubMed  Google Scholar 

  45. Bailey SA, Zidell RH, Perry RW (2004) Relationships between organ weight and body/brain weight in the rat: what is the best analytical endpoint? Toxicol Pathol 32:448–466

    Article  PubMed  Google Scholar 

  46. Hamilton KL, Lin L, Wang Y, Knowlton AA (2008) Effect of ovariectomy on cardiac gene expression: inflammation and changes in SOCS gene expression. Physiol Genomics 32:254–263

    Article  CAS  PubMed  Google Scholar 

  47. Gerginska F, Delchev S, Vasilev V, Georgieva K, Boyadjiev N (2022) The selective androgen receptor modulator ostarine increases the extracellular matrix in the myocardium without altering it in the EDL Muscle. Acta Morphologica et Anthropologica 29:45–48

    Article  Google Scholar 

  48. Padappayil RP, Chandini Arjun A, Vivar Acosta J, Ghali W, Mughal MS (2022) Acute myocarditis from the use of selective androgen receptor modulator (SARM) RAD-140 (Testolone). Cureus 14:e21663. doi: https://doi.org/10.7759/cureus.21663

  49. Payne JR, Kotwinski MHE (2004) Cardiac effects of anabolic steroids. Heart 90:473–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the German Research Foundation (DFG, KO 4646/3-1, SE 1966/6-1). The authors are grateful to their colleagues, R. Castro-Machguth and A. Witt

for their technical support.

Funding

This study was funded by Deutsche Forschungsgemeinschaft, KO 4646/3-1, Marina Komrakova, SE 1966/6-1, Stephan Sehmisch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel B. Hoffmann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 518 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffmann, D.B., Derout, C., Müller-Reiter, M. et al. Effects of ligandrol as a selective androgen receptor modulator in a rat model for osteoporosis. J Bone Miner Metab 41, 741–751 (2023). https://doi.org/10.1007/s00774-023-01453-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-023-01453-8

Keywords

Navigation