Skip to main content

Advertisement

Log in

Study on mass transfer in the bone lacunar-canalicular system under different gravity fields

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

The bone lacunar-canalicular system (LCS) is an important microstructural basis for signaling and material transport in bone tissue, guaranteeing normal physiological processes in tissues. Spaceflight astronauts and elderly osteoporosis are related to its function, so it is necessary to reveal the mass transfer laws in bone microstructure under different gravity fields to provide insight for effective clinical treatment.

Materials and methods

Using the natural LCS structure of bovine tibial cortical bone as the object, the mass transfer experiments on cortical bone were conducted by using sodium fluorescein tracer through different frequency pulsating pressure provided by dynamic perfusion loading device and different high G environments provided by high-speed centrifuge to analyze the mass transfer laws under different gravity fields and different pulsating pressures.

Results

The fluorescence intensity of lacunae within the osteon was lower the farther away from the Haversian canal. As the gravity field magnitude increased, the fluorescence intensity within each lacuna enhanced, and the more distant the lacunae from the Haversian canal, the greater the fluorescence intensity enhancement. High-frequency pulsating pressure simulated high-intensity exercise in humans can improve mass transfer efficiency in the LCS.

Conclusion

High-intensity exercise may greatly increase solute molecules, nutrients, and signaling molecules in osteocytes and improve the activity of osteocytes. Hypergravity can enhance the transport of solute molecules, nutrients, and signaling molecules in the LCS, especially promoting mass transfer to deep layer lacunae. Conversely, mass transfer to deep layer lacunae may be inhibited under microgravity, causing bone loss and ultimately leading to osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cowin SC, Cardoso L (2015) Blood and interstitial flow in the hierarchical pore space architecture of bone tissue. J Biomech 48:842–854

    Article  PubMed  Google Scholar 

  2. Wang L (2018) Solute transport in the bone lacunar-canalicular system (LCS). Curr Osteoporos Rep 16:32–41

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cowin SC (2002) Mechanosensation and fluid transport in living bone. J Musculoskelet Neuronal Interact 2:256–260

    CAS  PubMed  Google Scholar 

  4. Kumar R, Tiwari AK, Tripathi D, Sharma NN (2020) Signalling molecule transport analysis in lacunar-canalicular system. Biomech Model Mechanobiol 19:1879–1896

    Article  PubMed  Google Scholar 

  5. Knothe TM, Knothe U (2000) An ex vivo model to study transport processes and fluid flow in loaded bone. J Biomech 33:247–254

    Article  PubMed  Google Scholar 

  6. Knothe Tate ML, Niederer P, Knothe U (1998) In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading. Bone (New York, N.Y.) 22:107–117

    CAS  Google Scholar 

  7. Price C, Zhou X, Li W, Wang L (2011) Real-time measurement of solute transport within the lacunar-canalicular system of mechanically loaded bone: direct evidence for load-induced fluid flow. J Bone Miner Res 26:277–285

    Article  CAS  PubMed  Google Scholar 

  8. Kufahl RH, Saha S (1990) A theoretical model for stress-generated fluid flow in the canaliculi-lacunae network in bone tissue. J Biomech 23:171–180

    Article  CAS  PubMed  Google Scholar 

  9. Kumar R, Tiwari AK, Tripathi D, Shrivas NV, Nizam F (2019) Canalicular fluid flow induced by loading waveforms: a comparative analysis. J Theor Biol 471:59–73

    Article  PubMed  Google Scholar 

  10. Wu Xiaogang Yu, Weilun WZ, Ningning W, Haipeng C, Yanqin W, Weiyi C (2016) A canalicular fluid flow model associated with its fluid flow rate and fluid shear stress (in Chinese). Chin J Theor Appl Mech 48:1208–1216

    Google Scholar 

  11. Smith JK (2020) Osteoclasts and microgravity. Life 10:207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Noble B, Reeve J (2000) Osteocyte function, osteocyte death and bone fracture resistance. Mol Cell Endocrinol 159:7–13

    Article  CAS  PubMed  Google Scholar 

  13. Dodd JS, Raleigh JA, Gross TS (1999) Osteocyte hypoxia: a novel mechanotransduction pathway. Am J Physiol Cell Physiol 277:C598–C602

    Article  CAS  Google Scholar 

  14. Lai X, Chung R, Li Y, Liu XS, Wang L (2021) Lactation alters fluid flow and solute transport in maternal skeleton: a multiscale modeling study on the effects of microstructural changes and loading frequency. Bone 151:116033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stavnichuk M, Mikolajewicz N, Corlett T, Morris M, Komarova SV (2020) A systematic review and meta-analysis of bone loss in space travelers. NPJ Microgravity 6:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yongjie Ma, Yanhong Y, Liqin X, Yinghui Li, Yumin W, Zhizheng S (2003) Effects of simulated weightlessness and mechanical loading on bone interstitial fluid flow in rats (in Chinese). Space Med Med Eng 16:257–259

    Google Scholar 

  17. Rolvien T, Milovanovic P, Schmidt FN, Kroge S, Wölfel EM, Krause M, Wulff B, Püschel K, Ritchie RO, Amling M, Busse B (2020) Long-term immobilization in elderly females causes a specific pattern of cortical bone and osteocyte deterioration different from postmenopausal osteoporosis. J Bone Miner Res 35:1343–1351

    Article  CAS  PubMed  Google Scholar 

  18. Kumar R, Tiwari AK, Tripathi D, Mishra A (2022) Electromagnetic field induced alterations in fluid flow through lacuno-canalicular system of bone. Int J Mech Sci 217:107036

    Article  Google Scholar 

  19. Ikawa T, Kawaguchi A, Okabe T, Ninomiya T, Nakamichi Y, Nakamura M, Uehara S, Nakamura H, Udagawa N, Takahashi N, Nakamura H, Wakitani S (2011) Hypergravity suppresses bone resorption in ovariectomized rats. Adv Space Res 47:1214–1224

    Article  CAS  Google Scholar 

  20. Jun Li, Minglin S, Guangming S, Chunqiu Z, Ruixin Li, Xizheng Z, Kui H, Yingjie L (2017) The mechanical and biological responses of MC3T3-E1 cells under hypergravity (in Chinese). J Med Biomech 32:122–129

    Google Scholar 

  21. Markina EA, Andrianova IV, Shtemberg AS, Buravkova LB (2018) Effect of 30-day hindlimb unloading and hypergravity on bone marrow stromal progenitors in C57Bl/6N mice. Bull Exp Biol Med 166:130–134

    Article  CAS  PubMed  Google Scholar 

  22. Zhang H, Liu H, Zhang C, Liu Z, Wang W (2022) Multi-scale mechanical behavior analysis on fluid–solid coupling for osteons in various gravitational fields. J Mech Med Biol 22:2150071

    Article  Google Scholar 

  23. Zhao S, Liu H, Li Y, Song Y, Wang W, Zhang C (2020) Numerical analysis of the flow field in the lacunar-canalicular system under different magnitudes of gravity. Med Biol Eng Comput 58:509–518

    Article  PubMed  Google Scholar 

  24. Liu H, Zhao S, Zhang H, Huang S, Peng W, Zhang C, Wang W (2020) Research on solute transport behaviors in the lacunar-canalicular system using numerical simulation in microgravity. Comput Biol Med 119:103700

    Article  CAS  PubMed  Google Scholar 

  25. Liu H, Zhao C, Zhang H, Wang W, Liu Q (2022) Simulation study on the effect of resistance exercise on the hydrodynamic microenvironment of osteocytes in microgravity. Comput Methods Biomech Biomed Eng. https://doi.org/10.1080/10255842.2022.2037130

    Article  Google Scholar 

  26. Wang H, Liu H, Wang X, Zhang C (2021) The lack of mass transfer in bone lacunar-canalicular system may be the decisive factor of osteoporosis under microgravity. Life Sci Space Res 31:80–84

    Article  Google Scholar 

  27. Ma A, Huang X (2008) Development of manned space environmental simulation technology (in Chinese). Space Med Med Eng 21:224–232

    Google Scholar 

  28. Pressler A, Jähnig A, Halle M, Haller B (2018) Blood pressure response to maximal dynamic exercise testing in an athletic population. J Hypertens 36:1803–1809

    Article  CAS  PubMed  Google Scholar 

  29. Granata C, Caruana NJ, Botella J, Jamnick NA, Huynh K, Kuang J, Janssen HA, Reljic B, Mellett NA, Laskowski A, Stait TL, Frazier AE, Coughlan MT, Meikle PJ, Thorburn DR, Stroud DA, Bishop DJ (2021) High-intensity training induces non-stoichiometric changes in the mitochondrial proteome of human skeletal muscle without reorganisation of respiratory chain content. Nat Commun 12:1–18

    Article  Google Scholar 

  30. Mian L (2014) How to stimulate a space microgravity environment or effect on Earth from the viewpoint of responses of space cell growth to microgravity (in Chinese). Chin Sci Bull (Chin Ver) 59:2004–2015

    Article  Google Scholar 

  31. Busse B, Djonic D, Milovanovic P, Hahn M, Püschel K, Ritchie RO, Djuric M, Amling M (2010) Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell 9:1065–1075

    Article  CAS  PubMed  Google Scholar 

  32. Ma YL, Dai RC, Sheng ZF, Jin Y, Zhang YH, Fang LN, Fan HJ, Liao EY (2008) Quantitative associations between osteocyte density and biomechanics, microcrack and microstructure in OVX rats vertebral trabeculae. J Biomech 41:1324–1332

    Article  PubMed  Google Scholar 

  33. Morabito C, Guarnieri S, Cucina A, Bizzarri M, Mariggiò MA (2020) Antioxidant strategy to prevent simulated microgravity-induced effects on bone osteoblasts. Int J Mol Sci 21:3638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang X, Wang Q, Wan Z, Li J, Liu L, Zhang X (2016) CKIP-1 knockout offsets osteoporosis induced by simulated microgravity. Prog Biophys Mol Biol 122:140–148

    Article  CAS  PubMed  Google Scholar 

  35. Frey MA (2011) Identifying effective countermeasures to bone loss experienced during spaceflight. Aviat Space Environ Med 82:829–830

    Article  Google Scholar 

  36. Cao Q, Zhang J, Liu H, Wu Q, Chen J, Chen GQ (2014) The mechanism of anti-osteoporosis effects of 3-hydroxybutyrate and derivatives under simulated microgravity. Biomaterials 35:8273–8283

    Article  CAS  PubMed  Google Scholar 

  37. Liu C, Gao X, Li Y, Sun W, Xu Y et al (2022) The mechanosensitive lncRNA Neat1 promotes osteoblast function through paraspeckle-dependent Smurf1 mRNA retention. Bone Res 10:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Loehr JA, Guilliams ME, Petersen N, Hirsch N, Kawashima S, Ohshima H (2015) Physical training for long-duration spaceflight. Aerosp Med Human Perform 86:14–23

    Article  Google Scholar 

Download references

Acknowledgements

The project was supported by National Natural Science Foundation of China (12072235,11932013), National Defense Science and Technology Excellence Youth Science Fund Project (2021-JCJQ-ZQ-035), Key Project of National Defense Innovation Special Zone (21-163-12-ZT-006-002-13).

Author information

Authors and Affiliations

Authors

Contributions

HW: conceptualization, methodology, data curation, and writing—original draft preparation; LLG: data curation and editing; XYC: conceptualization, supervision; CQZ: conceptualization, supervision, and writing—reviewing and editing.

Corresponding authors

Correspondence to Xuyi Chen or Chunqiu Zhang.

Ethics declarations

Conflict of interest

All authors have read and approved the manuscript to be submitted, and there is no ethical problem or conflict of interest in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Gao, L., Chen, X. et al. Study on mass transfer in the bone lacunar-canalicular system under different gravity fields. J Bone Miner Metab 40, 940–950 (2022). https://doi.org/10.1007/s00774-022-01373-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-022-01373-z

Keywords

Navigation