Skip to main content

Advertisement

Log in

Accuracy of the Fracture Risk Assessment Tool for judging pharmacotherapy initiation for primary osteoporosis

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

This study aimed to determine whether the Fracture Risk Assessment Tool (FRAX®) is useful in assessing the criteria for the initiation of pharmacotherapy for primary osteoporosis based on the current diagnostic criteria in Japan.

Materials and methods

We enrolled 614 patients aged ≥ 40 years (average, 77.0 years) who were eligible for primary osteoporosis evaluation. Bone mineral density measurements of the lumbar spine, total hip, and femoral neck using ALPHYS LF (FUJIFILM, Tokyo, Japan) and imaging studies involving the lumbar spine were obtained and the FRAX® scores of each patient were calculated with and without the T-score of the femoral neck. The receiver operating characteristic curve analysis method was used to calculate the cut-off FRAX® scores with reference to the criteria for initiating pharmacotherapy for osteoporosis; the accuracies of both FRAX® scores were compared.

Results

The FRAX® score calculated with the T-score was more accurate for hip fracture risk assessment [cut-off value 5.5%; the area under the curve (AUC) 0.946] than for major osteoporotic fracture risk assessment (cut-off value 17.0%; AUC 0.924) in judging the criteria (p = 0.001). Conversely, the FRAX® score calculated without the T-score was equally accurate for hip fracture risk assessment (AUC 0.796) and major osteoporotic fracture risk assessment (AUC 0.806) (p = 0.23).

Conclusion

The FRAX® score can accurately assess the criteria for initiating pharmacotherapy for primary osteoporosis based on the current Japanese diagnostic criteria, especially when the T-score is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sambrook P, Cooper C (2006) Osteoporosis. Lancet 367:2010–2018. https://doi.org/10.1016/S0140-6736(06)68891-0

    Article  CAS  PubMed  Google Scholar 

  2. Yoshimura N, Muraki S, Oka H, Mabuchi A, En-Yo Y, Yoshida M, Saika A, Yoshida H, Suzuki T, Yamamoto S, Ishibashi H, Kawaguchi H, Nakamura K, Akune T (2009) Prevalence of knee osteoarthritis, lumbar spondylosis, and osteoporosis in Japanese men and women: the research on osteoarthritis/osteoporosis against disability study. J Bone Miner Metab 27:620–628. https://doi.org/10.1007/s00774-009-0080-8

    Article  PubMed  Google Scholar 

  3. Soen S, Fukunaga M, Sugimoto T, Sone T, Fujiwara S, Endo N, Gorai I, Shiraki M, Hagino H, Hosoi T, Ohta H, Yoneda T, Tomomitsu T, Japanese Society for Bone and Mineral Research, Japan Osteoporosis Society Joint Review Committee for the Revision of the Diagnostic Criteria for Primary Osteoporosis (2013) Diagnostic criteria for primary osteoporosis: year 2012 revision. J Bone Miner Metab 31:247–257. https://doi.org/10.1007/s00774-013-0447-8

    Article  PubMed  Google Scholar 

  4. Kanis JA, Borgstrom F, De Laet C, Johansson H, Johnell O, Jonsson B, Oden A, Zethraeus N, Pfleger B, Khaltaev N (2005) Assessment of fracture risk. Osteoporos Int 16:581–589. https://doi.org/10.1007/s00198-004-1780-5

    Article  PubMed  Google Scholar 

  5. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–397. https://doi.org/10.1007/s00198-007-0543-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kanis JA, Johansson H, Harvey NC, McCloskey EV (2018) A brief history of FRAX. Arch Osteoporos 13:118. https://doi.org/10.1007/s11657-018-0510-0

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nakatoh S, Takemaru Y (2013) Application of the fracture risk assessment tool (FRAX(®)) and determination of suitable cut-off values during primary screening in specific health check-ups in Japan. J Bone Miner Metab 31:674–680. https://doi.org/10.1007/s00774-013-0457-6

    Article  PubMed  Google Scholar 

  8. Kanda Y (2013) Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant 48:452–458. https://doi.org/10.1038/bmt.2012.244

    Article  CAS  PubMed  Google Scholar 

  9. Kanis JA, Johansson H, Harvey NC, Lorentzon M, Liu E, Vandenput L, McCloskey EV (2021) An assessment of intervention thresholds for very high fracture risk applied to the NOGG guidelines: a report for the National Osteoporosis Guideline Group (NOGG). Osteoporos Int 32:1951–1960. https://doi.org/10.1007/s00198-021-05942-2

    Article  CAS  PubMed  Google Scholar 

  10. Clark P, Denova-Gutiérrez E, Zerbini C, Sanchez A, Messina O, Jaller JJ, Campusano C, Orces CH, Riera G, Johansson H, Kanis JA (2018) FRAX-based intervention and assessment thresholds in seven Latin American countries. Osteoporos Int 29:707–715. https://doi.org/10.1007/s00198-017-4341-4

    Article  CAS  PubMed  Google Scholar 

  11. Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA (1999) Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet 353:878–882. https://doi.org/10.1016/S0140-6736(98)09075-8

    Article  CAS  PubMed  Google Scholar 

  12. Coassy A, Svedbom A, Locrelle H, Chapurlat R, Cortet B, Fardellone P, Orcel P, Roux C, Borgström F, Kanis JA, Thomas T (2022) Costs of patient management over 18 months following a hip, clinical vertebral, distal forearm, or proximal humerus fragility fracture in France-results from the ICUROS study. Osteoporos Int 33:625–635. https://doi.org/10.1007/s00198-021-06189-7

    Article  PubMed  Google Scholar 

  13. Quevedo I, Ormeño JC, Weissglas B, Opazo C (2020) Epidemiology and direct medical cost of osteoporotic hip fracture in Chile. J Osteoporos 2020:5360467. https://doi.org/10.1155/2020/5360467.eCollection2020

    Article  PubMed  PubMed Central  Google Scholar 

  14. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22:465–475. https://doi.org/10.1359/jbmr.061113

    Article  PubMed  Google Scholar 

  15. Nakatoh S, Fujimori K, Ishii S, Tamaki J, Okimoto N, Ogawa S, Iki M (2021) Insufficient persistence to pharmacotherapy in Japanese patients with osteoporosis: an analysis of the National Database of Health Insurance Claims and Specific Health Checkups in Japan. Arch Osteoporos 16:131. https://doi.org/10.1007/s11657-021-00993-8

    Article  PubMed  Google Scholar 

  16. Nakatoh S, Fujimori K, Tamaki J, Okimoto N, Ogawa S, Iki M (2020) Insufficient increase in bone mineral density testing rates and pharmacotherapy after hip fracture in Japan. J Bone Miner Metab 38:589–596. https://doi.org/10.1007/s00774-020-01093-2

    Article  CAS  PubMed  Google Scholar 

  17. Tsukutani Y, Hagino H, Ito Y, Nagashima H (2015) Epidemiology of fragility fractures in Sakaiminato, Japan: incidence, secular trends, and prognosis. Osteoporos Int 26:2249–2255. https://doi.org/10.1007/s00198-015-3124-z

    Article  CAS  PubMed  Google Scholar 

  18. Marcus R, Wang O, Satterwhite J, Mitlak B (2003) The skeletal response to teriparatide is largely independent of age, initial bone mineral density, and prevalent vertebral fractures in postmenopausal women with osteoporosis. J Bone Miner Res 18:18–23. https://doi.org/10.1359/jbmr.2003.18.1.18

    Article  CAS  PubMed  Google Scholar 

  19. Shiraki M, Kuroda T, Miyakawa N, Fujinawa N, Tanzawa K et al (2011) Design of a pragmatic approach to evaluate the effectiveness of concurrent treatment for the prevention of osteoporotic fractures: rationale, aims and organization of a Japanese Osteoporosis Intervention Trial (JOINT) initiated by the Research Group of Adequate Treatment of Osteoporosis (A-TOP). J Bone Miner Metab 29:37–43. https://doi.org/10.1007/s00774-010-0188-x

    Article  CAS  PubMed  Google Scholar 

  20. Gallagher JC, Genant HK, Crans GG, Vargas SJ, Krege JH (2005) Teriparatide reduces the fracture risk associated with increasing number and severity of osteoporotic fractures. J Clin Endocrinol Metab 90:1583–1587. https://doi.org/10.1210/jc.2004-0826

    Article  CAS  PubMed  Google Scholar 

  21. Tanaka S, Mori S, Hagino H, Sugimoto T (2020) Design of a randomized trial of teriparatide followed by alendronate: Japanese Osteoporosis Intervention Trial-05 (JOINT-05). J Bone Miner Metab 38:412–417. https://doi.org/10.1007/s00774-019-01074-0

    Article  CAS  PubMed  Google Scholar 

  22. Orimo H, Hayashi Y, Fukunaga M, Sone T, Fujiwara S, Shiraki M, Kushida K, Miyamoto S, Soen S, Nishimura J, Oh-Hashi Y, Hosoi T, Gorai I, Tanaka H, Igai T, Kishimoto H, Committee ODCR (2001) Diagnostic criteria for primary osteoporosis: year 2000 revision. J Bone Miner Metab 19:331–337. https://doi.org/10.1007/s007740170001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

HF: conception and design, analysis and interpretation of data, drafting the article, revising the article critically for important intellectual content, and final approval. MT, YK, AM, and TY: collecting the data, revising the article for important intellectual content, and final approval. YI: conceptualization and supervision.

Corresponding author

Correspondence to Hiroshi Fujimaki.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujimaki, H., Tomioka, M., Kanoshima, Y. et al. Accuracy of the Fracture Risk Assessment Tool for judging pharmacotherapy initiation for primary osteoporosis. J Bone Miner Metab 40, 860–868 (2022). https://doi.org/10.1007/s00774-022-01356-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-022-01356-0

Keywords

Navigation