Skip to main content

Advertisement

Log in

Irisin improves delayed bone repair in diabetic female mice

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

Irisin is a proteolytic product of fibronectin type II domain-containing 5, which is related to the improvement in glucose metabolism. Numerous studies have suggested that irisin is a crucial myokine linking muscle to bone in physiological and pathophysiological states.

Materials and methods

We examined the effects of local irisin administration with gelatin hydrogel sheets and intraperitoneal injection of irisin on the delayed femoral bone repair caused by streptozotocin (STZ)-induced diabetes in female mice. We analyzed the femurs of mice using quantitative computed tomography and histological analyses and then measured the mRNA levels in the damaged mouse tissues.

Results

Local irisin administration significantly blunted the delayed bone repair induced by STZ 10 days after a femoral bone defect was generated. Local irisin administration significantly blunted the number of Osterix-positive cells that were suppressed by STZ at the damaged site 4 days after a femoral bone defect was generated, although it did not affect the mRNA levels of chondrogenic and adipogenic genes 4 days after bone injury in the presence or absence of diabetes. On the other hand, intraperitoneal injection of irisin did not affect delayed bone repair induced by STZ 10 days after bone injury. Irisin significantly blunted the decrease in Osterix mRNA levels induced by advanced glycation end products or high-glucose conditions in ST2 cells in the presence of bone morphogenetic protein-2.

Conclusions

We first showed that local irisin administration with gelatin hydrogel sheets improves the delayed bone repair induced by diabetic state partially by enhancing osteoblastic differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kawao N, Kaji H (2015) Interactions between muscle tissues and bone metabolism. J Cell Biochem 116:687–695

    Article  CAS  PubMed  Google Scholar 

  2. Kaji H (2016) Effects of myokines on bone. Bonekey Rep 5:826

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nie Y, Dai B, Guo X, Liu D (2020) Cleavage of FNDC5 and insights into its maturation process. Mol Cell Endocrinol 510:110840

    Article  CAS  PubMed  Google Scholar 

  4. Kim H, Wrann CD, Jedrychowski M, Vidoni S, Kitase Y et al (2018) Irisin mediates effects on bone and fat via alphaV integrin receptors. Cell 175:1756–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Højlund K, Gygi SP, Spiegelman BM (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Zhou K, Qiao X, Cai Y, Li A, Shan D (2019) Lower circulating irisin in middle-aged and older adults with osteoporosis: a systematic review and meta-analysis. Menopause 26:1302–1310

    Article  PubMed  Google Scholar 

  7. Wu LF, Zhu DC, Tang CH, Ge B, Shi J et al (2018) Association of plasma irisin with bone mineral density in a large Chinese population using an extreme sampling design. Calcif Tissue Int 103:246–251

    Article  CAS  PubMed  Google Scholar 

  8. Anastasilakis AD, Polyzos SA, Makras P, Gkiomisi A, Bisbinas I, Katsarou A, Filippaios A, Mantzoros CS (2014) Circulating irisin is associated with osteoporotic fractures in postmenopausal women with low bone mass but is not affected by either teriparatide or denosumab treatment for 3 months. Osteoporos Int 25:1633–1642

    Article  CAS  PubMed  Google Scholar 

  9. Colaianni G, Cuscito C, Mongelli T, Pignataro P, Buccoliero C et al (2015) The myokine irisin increases cortical bone mass. Proc Natl Acad Sci USA 112:12157–12162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Colaianni G, Mongelli T, Cuscito C, Pignataro P, Lippo L, Spiro G, Notarnicola A, Severi I, Passeri G, Mori G, Brunetti G, Moretti B, Tarantino U, Colucci SC, Reseland JE, Vettor R, Cinti S, Grano M (2017) Irisin prevents and restores bone loss and muscle atrophy in hind-limb suspended mice. Sci Rep 7:2811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kawao N, Moritake A, Tatsumi K, Kaji H (2018) Roles of irisin in the linkage from muscle to bone during mechanical unloading in mice. Calcif Tissue Int 103:24–34

    Article  CAS  PubMed  Google Scholar 

  12. Kawao N, Iemura S, Kawaguchi M, Mizukami Y, Takafuji Y, Kaji H (2021) Role of irisin in effects of chronic exercise on muscle and bone in ovariectomized mice. J Bone Miner Metab 39:547–557

    Article  CAS  PubMed  Google Scholar 

  13. Tamura Y, Kawao N, Shimoide T, Okada K, Matsuo O, Kaji H (2018) Role of plasminogen activator inhibitor-1 in glucocorticoid-induced muscle change in mice. J Bone Miner Metab 36:148–156

    Article  CAS  PubMed  Google Scholar 

  14. Tamura Y, Fujito H, Kawao N, Kaji H (2017) Vitamin D deficiency aggravates diabetes-induced muscle wasting in female mice. Diabetol Int 8:52–58

    Article  PubMed  Google Scholar 

  15. Iemura S, Kawao N, Okumoto K, Akagi M, Kaji H (2020) Role of irisin in androgen-deficient muscle wasting and osteopenia in mice. J Bone Miner Metab 38:161–171

    Article  CAS  PubMed  Google Scholar 

  16. Chen Z, Zhang Y, Zhao F, Yin C, Yang C, Wang X, Wu Z, Liang S, Li D, Lin X, Tian Y, Hu L, Li Y, Qian A (2020) Recombinant irisin prevents the reduction of osteoblast differentiation induced by stimulated microgravity through increasing beta-Catenin expression. Int J Mol Sci 21:1259

    Article  CAS  PubMed Central  Google Scholar 

  17. Colaianni G, Cuscito C, Mongelli T, Oranger A, Mori G, Brunetti G, Colucci S, Cinti S, Grano M (2014) Irisin enhances osteoblast differentiation in vitro. Int J Endocrinol 2014:902186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Qiao X, Nie Y, Ma Y, Chen Y, Cheng R, Yin W, Hu Y, Xu W, Xu L (2016) Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways. Sci Rep 6:18732

    Article  CAS  PubMed  Google Scholar 

  19. Estell EG, Le PT, Vegting Y, Kim H, Wrann C, Bouxsein ML, Nagano K, Baron R, Spiegelman BM, Rosen CJ (2020) Irisin directly stimulates osteoclastogenesis and bone resorption in vitro and in vivo. Elife 9:e58172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Storlino G, Colaianni G, Sanesi L, Lippo L, Brunetti G, Errede M, Colucci S, Passeri G, Grano M (2020) Irisin prevents disuse-induced osteocyte apoptosis. J Bone Miner Res 35:766–775

    Article  CAS  PubMed  Google Scholar 

  21. He Z, Li H, Han X, Zhou F, Du J, Yang Y, Xu Q, Zhang S, Zhang S, Zhao N, Yan M (2020) Irisin inhibits osteocyte apoptosis by activating the Erk signaling pathway in vitro and attenuates ALCT-induced osteoarthritis in mice. Bone 141:115573

    Article  CAS  PubMed  Google Scholar 

  22. Ma Y, Qiao X, Zeng R, Cheng R, Zhang J, Luo Y, Nie Y, Hu Y, Yang Z, Zhang J, Liu L, Xu W, Xu CC, Xu L (2018) Irisin promotes proliferation but inhibits differentiation in osteoclast precursor cells. FASEB J. https://doi.org/10.1096/fj.201700983RR

    Article  PubMed  PubMed Central  Google Scholar 

  23. Claes L, Recknagel S, Ignatius A (2012) Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 8:133–143

    Article  CAS  PubMed  Google Scholar 

  24. Hu K, Olsen BR (2016) Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J Clin Invest 126:509–526

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xin X, Wu J, Zheng A, Jiao D, Liu Y, Cao L, Jiang X (2019) Delivery vehicle of muscle-derived irisin based on silk/calcium silicate/sodium alginate composite scaffold for bone regeneration. Int J Nanomedicine 14:1451–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes -a meta-analysis. Osteoporos Int 18:427–444

    Article  CAS  PubMed  Google Scholar 

  27. Retzepi M, Donos N (2010) The effect of diabetes mellitus on osseous healing. Clin Oral Implants Res 21:673–681

    Article  CAS  PubMed  Google Scholar 

  28. Shimoide T, Kawao N, Tamura Y, Okada K, Horiuchi Y, Okumoto K, Kurashimo S, Ishida M, Tatsumi K, Matsuo O, Kaji H (2018) Role of macrophages and plasminogen activator inhibitor-1 in delayed bone repair in diabetic female mice. Endocrinology 159:1875–1885

    Article  CAS  PubMed  Google Scholar 

  29. Mao L, Kawao N, Tamura Y, Okumoto K, Okada K, Yano M, Matsuo O, Kaji H (2014) Plasminogen activator inhibitor-1 is involved in impaired bone repair associated with diabetes in female mice. PLoS ONE 9:e92686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Gamas L, Matafome P, Seica R (2015) Irisin and myonectin regulation in the insulin resistant muscle: implications to adipose tissue: muscle crosstalk. J Diabetes Res 2015:359159

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yang Z, Chen X, Chen Y, Zhao Q (2015) Decreased irisin secretion contributes to muscle insulin resistance in high-fat diet mice. Int J Clin Exp Pathol 8:6490–6497

    PubMed  PubMed Central  Google Scholar 

  32. Okada K, Okamoto T, Okumoto K, Takafuji Y, Ishida M, Kawao N, Matsuo O, Kaji H (2020) PAI-1 is involved in delayed bone repair induced by glucocorticoids in mice. Bone 134:115310

    Article  CAS  PubMed  Google Scholar 

  33. Mishima S, Takahashi K, Kiso H, Murashima-Suginami A, Tokita Y, Jo JI, Uozumi R, Nambu Y, Huang B, Harada H, Komori T, Sugai M, Tabata Y, Bessho K (2021) Local application of Usag-1 siRNA can promote tooth regeneration in Runx2-deficient mice. Sci Rep 11:13674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hong L, Jing S, Tong W, Jiangying K, Qinhui L, Shihai C, Shiyun P, Lei C, Rui L, Yanping L, Min Z, Zhiyong Z, Wei J, Aijuan Q, Jinhan H (2019) Irisin is controlled by farnesoid X receptor and regulates cholesterol homeostasis. Front Pharmacol 10:548

    Article  CAS  Google Scholar 

  35. Tanaka K, Yamaguchi T, Kaji H, Kanazawa I, Sugimoto T (2013) Advanced glycation end products suppress osteoblastic differentiation of stromal cells by activating endoplasmic reticulum stress. Biochem Biophys Res Commun 438:463–467

    Article  CAS  PubMed  Google Scholar 

  36. Swaroop JJ, Rajarajeswari D, Naidu JN (2012) Association of TNF-alpha with insulin resistance in type 2 diabetes mellitus. Indian J Med Res 135:127–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huebschmann AG, Regensteiner JG, Vlassara H, Reusch JE (2006) Diabetes and advanced glyco-oxidation end products. Diabetes Care 29:1420–1432

    Article  CAS  PubMed  Google Scholar 

  38. Zuo CJ, Zhao XY, Shi Y, Wu W, Zhang N, Xu J, Wang C, Hu G, Zhang X (2018) TNF-alpha inhibits SATB2 expression and osteoblast differentiation through NF-kappa B and MAPK pathways. Oncotarget 9:4833–4850

    Article  PubMed  Google Scholar 

  39. Liu CL, Jiang DM (2017) High glucose-induced LIF suppresses osteoblast differentiation via regulating STAT3/SOCS3 signaling. Cytokine 91:132–139

    Article  CAS  PubMed  Google Scholar 

  40. Gandhi A, Beam HA, O’Connor JP, Parsons JR, Lin SS (2005) The effects of local insulin delivery on diabetic fracture healing. Bone 37:482–490

    Article  CAS  PubMed  Google Scholar 

  41. Rosen CJ, Ackert-Bicknell C, Rodriguez JP, Pino AM (2009) Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit Rev Eukar Gene 19:109–124

    Article  CAS  Google Scholar 

  42. McCabe LR (2007) Understanding the pathology and mechanisms of type I diabetic bone loss. J Cell Biochem 102:1343–1357

    Article  CAS  PubMed  Google Scholar 

  43. Li X, Zhu X, Wu H, Van Dyke TE, Xu X, Morgan EF, Fu W, Liu C, Tu Q, Huang D, Chen J (2021) Roles and mechanisms of irisin in attenuating pathological features of osteoarthritis. Front Cell Dev Biol 9:703670

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kawao N, Kawaguchi M, Ohira T, Ehara H, Mizukami Y, Takafuji Y, Kaji H (2022) Renal failure suppresses muscle irisin expression and irisin blunts cortical bone loss in mice. J Cachexia Sarcopenia Muscle 13:758–771

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The study was partially supported by grants from The Osaka Medical Research Foundation for Intractable Diseases to Y.T., the Cooperative Research Program (Joint usage/Research Center program) of the Institute for Frontier Life and Medical Sciences, Kyoto University, to Y.T., a JSPS KAKENHI Grant-in-Aid for Early Career Scientists (19K18480) and a Grant-in-Aid for Scientific Research (C: 21K09240) to Y.T., as well as a Grant-in-Aid for Scientific Research on Innovative Areas (15H05935, “Living in Space”)/Grant-in-Aid for Scientific Research (C:20K09514) to H.K. from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Contributions

YK: investigation, formal analysis, and writing—original draft. YT: conceptualization, investigation, supervision, writing—review and editing, and funding acquisition. KO: resources and investigation. YT: investigation. HE: resources and investigation. YM: resources. NK: conceptualization. JJ: resources. YT: resources and writing—review and editing. HK: conceptualization, supervision, writing—review and editing, project administration, and funding acquisition.

Corresponding author

Correspondence to Hiroshi Kaji.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinoshita, Y., Takafuji, Y., Okumoto, K. et al. Irisin improves delayed bone repair in diabetic female mice. J Bone Miner Metab 40, 735–747 (2022). https://doi.org/10.1007/s00774-022-01353-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-022-01353-3

Keywords

Navigation