Skip to main content

Advertisement

Log in

Association of Plasma Irisin with Bone Mineral Density in a Large Chinese Population Using an Extreme Sampling Design

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Irisin, a myokine produced by skeletal muscle in response to physical exercise, promotes trans-differentiation of white adipose tissue into brown adipose tissue. Recent evidences suggested that irisin also plays an important role in the control of bone metabolism. This study aimed to ascertain the relationship between plasma irisin and bone mineral density (BMD) in Chinese population by adoption of an extreme sampling method. Based on a large and screened Chinese elderly population (N = 6308), two subgroups with extremely high and low hip BMD were selected for discovery (N = 80, high vs. low BMD = 44:36) and validation (N = 60, high vs. low BMD = 30:30), respectively. Plasma irisin, P1NP, and β-CTx were measured using commercially available ELISA kits. Other metabolic parameters (e.g., blood glucose, total cholesterol and triglycerides) were collected. Student’s t test and Spearman correlation analyses were conducted in SPSS. Significant difference was discovered for plasma irisin between females and age-matched males (N = 80, male vs. female = 42:38, P = 0.002). The plasma irisin levels were significantly higher in high BMD subjects than in low BMD subjects, which was observed in both discovery (P = 0.012) and validation samples (P = 0.022). However, such observation was limited to males only. Further correlation analyses in males showed that plasma irisin was correlated with BMD (r = 0.362, P = 0.025) and triglyceride (r = − 0.354, P = 0.032). Plasma irisin levels were associated with hip BMD in Chinese elderly men. This study represented the first effort of investigating the relationship of plasma irisin and BMD in elderly population. The positive correlation between plasma irisin and BMD hints intrinsic communication between muscle and bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Laurent MR, Dubois V, Claessens F, Verschueren SMP, Vanderschueren D, Gielen E, Jardi F (2016) Muscle-bone interactions: from experimental models to the clinic? A critical update. Mol Cell Endocrinol 432(C):24–46

    Google Scholar 

  2. Brotto M, Bonewald L (2015) Bone and muscle: interactions beyond mechanical. Bone 80:109–114

    Article  PubMed  PubMed Central  Google Scholar 

  3. Brotto M, Johnson ML (2014) Endocrine crosstalk between muscle and bone. Curr Osteoporos Rep 12(2):135–141

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nakaoka D, Sugimoto T, Kaji H, Kanzawa M, Yano S, Yamauchi M, Sugishita T, Chihara K (2001) Determinants of bone mineral density and spinal fracture risk in postmenopausal Japanese women. Osteoporosis Int 12(7):548–554

    Article  CAS  Google Scholar 

  5. Dytfeld J, Ignaszak-Szczepaniak M, Gowin E, Michalak M, Horst-Sikorska W (2011) Influence of lean and fat mass on bone mineral density (BMD) in postmenopausal women with osteoporosis. Arch Gerontol Geriatr 53(2):E237–E242

    Article  PubMed  Google Scholar 

  6. Goodman CA, Hornberger TA, Robling AG (2015) Bone and skeletal muscle: key players in mechanotransduction and potential overlapping mechanisms. Bone 80:24–36

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rosa N, Simoes R, Magalhaes FD, Marques AT (2015) From mechanical stimulus to bone formation: a review. Med Eng Phys 37(8):719–728

    Article  PubMed  Google Scholar 

  8. Mullender M, El Haj AJ, Yang Y, van Duin MA, Burger EH, Klein-Nulend J (2004) Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue. Med Biol Eng Comput 42(1):14–21

    Article  PubMed  CAS  Google Scholar 

  9. Shah K, Majeed Z, Jonason J, O’Keefe RJ (2013) The role of muscle in bone repair: the cells, signals, and tissue responses to injury. Curr Osteoporos Rep 11(2):130–135

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li YX, Hiroi Y, Liao JK (2010) Notch signaling as an important mediator of cardiac repair and regeneration after myocardial infarction. Trends Cardiovasc Med 20(7):228–231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Rainbow RS, Kwon H, Foote AT, Preda RC, Kaplan DL, Zeng L (2013) Muscle cell-derived factors inhibit inflammatory stimuli-induced damage in hMSC-derived chondrocytes. Osteoarthr Cartil 21(7):990–998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Sims NA (2016) Cell-specific paracrine actions of IL-6 family cytokines from bone, marrow and muscle that control bone formation and resorption. Int J Biochem Cell B 79:14–23

    Article  CAS  Google Scholar 

  13. Schnyder S, Handschin C (2015) Skeletal muscle as an endocrine organ: PGC-1 alpha, myokines and exercise. Bone 80:115–125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Pedersen BK (2013) Muscle as a secretory organ. Compr Physiol 3(3):1337–1362

    PubMed  Google Scholar 

  15. Wu LF, Zhu DC, Wang BH, Lu YH, He P, Zhang YH, Gao HQ, Zhu XW, Xia W, Zhu H et al (2018) Relative abundance of mature myostatin rather than total myostatin is negatively associated with bone mineral density in Chinese. J Cell Mol Med 22(2):1329–1336

    PubMed  CAS  Google Scholar 

  16. Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8(8):457–465

    Article  PubMed  CAS  Google Scholar 

  17. Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Bostrom EA, Choi JH, Long JZ et al (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481(7382):U463–U472

    Article  CAS  Google Scholar 

  18. Colaianni G, Cuscito C, Mongelli T, Pignataro P, Buccoliero C, Liu P, Lu P, Sartini L, Di Comite M, Mori G et al (2015) The myokine irisin increases cortical bone mass. Proc Natl Acad Sci USA 112(39):12157–12162

    Article  PubMed  CAS  Google Scholar 

  19. Colaianni G, Mongelli T, Colucci S, Cinti S, Grano M (2016) Crosstalk between muscle and bone via the muscle-myokine irisin. Curr Osteoporos Rep 14(4):132–137

    Article  PubMed  CAS  Google Scholar 

  20. Colaianni G, Mongelli T, Cuscito C, Pignataro P, Lippo L, Spiro G, Notarnicola A, Severi I, Passeri G, Mori G et al (2017) Irisin prevents and restores bone loss and muscle atrophy in hind-limb suspended mice. Sci Rep 7:2811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Qiao X, Nie Y, Ma Y, Chen Y, Cheng R, Yin W, Hu Y, Xu W, Xu L (2016) Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways. Sci Rep 6:18732

    Article  PubMed  CAS  Google Scholar 

  22. Soininen S, Sidoroff V, Lindi V, Mahonen A, Kroger L, Kroger H, Jaaskelainen J, Atalay M, Laaksonen DE, Laitinen T et al (2018) Body fat mass, lean body mass and associated biomarkers as determinants of bone mineral density in children 6–8 years of age—the Physical Activity and Nutrition in Children (PANIC) study. Bone 108:106–114

    Article  PubMed  Google Scholar 

  23. Colaianni G, Notarnicola A, Sanesi L, Brunetti G, Lippo L, Celi M, Moretti L, Pesce V, Vicenti G, Moretti B et al (2017) Irisin levels correlate with bone mineral density in soccer players. J Biol Regul Homeost Agents 31(4 suppl 1):21–28

    PubMed  CAS  Google Scholar 

  24. Woodhouse A, Black DM (2000) BMD at various sites for the prediction of hip fracture: a meta-analysis. J Bone Miner Res 15:S145–S145

    Google Scholar 

  25. McCloskey E, Johansson H, Harvey NC, Shepstone L, Lenaghan E, Fordham R, Harvey I, Howe A, Cooper C, Clarke S et al (2018) Management of patients with high baseline hip fracture risk by FRAX reduces hip fractures—a post hoc analysis of the SCOOP study. J Bone Miner Res. https://doi.org/10.1002/jbmr.3411

    Article  PubMed  Google Scholar 

  26. Shepstone L, Lenaghan E, Cooper C, Clarke S, Fong-Soe-Khioe R, Fordham R, Gittoes N, Harvey I, Harvey N, Heawood A et al (2018) Screening in the community to reduce fractures in older women (SCOOP): a randomised controlled trial. Lancet 391(10122):741–747

    Article  PubMed  Google Scholar 

  27. Zugel M, Qiu S, Laszlo R, Bosnyak E, Weigt C, Muller D, Diel P, Steinacker JM, Schumann U (2016) The role of sex, adiposity, and gonadectomy in the regulation of irisin secretion. Endocrine 54(1):101–110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Hofmann T, Elbelt U, Stengel A (2014) Irisin as a muscle-derived hormone stimulating thermogenesis—a critical update. Peptides 54:89–100

    Article  PubMed  CAS  Google Scholar 

  29. Chen N, Li QX, Liu J, Jia SH (2016) Irisin, an exercise-induced myokine as a metabolic regulator: an updated narrative review. Diabetes Metab Res 32(1):51–59

    Article  Google Scholar 

  30. Zhang F, Guo X, Zhang YP, Wen Y, Wang WZ, Wang S, Yang TL, Shen H, Chen XD, Tian Q et al (2014) Genome-wide copy number variation study and gene expression analysis identify ABI3BP as a susceptibility gene for Kashin-Beck disease. Hum Genet 133(6):793–799

    Article  PubMed  CAS  Google Scholar 

  31. Deng FY, Liu YZ, Li LM, Jiang C, Wu S, Chen Y, Jiang H, Yang F, Xiong JX, Xiao P et al (2008) Proteomic analysis of circulating monocytes in Chinese premenopausal females with extremely discordant bone mineral density. Proteomics 8(20):4259–4272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Xu C, Fang J, Shen H, Wang Y-P, Deng H-W (2018) EPS-LASSO: test for high-dimensional regression under extreme phenotype sampling of continuous traits. Bioinformatics. https://doi.org/10.1093/bioinformatics/bty042

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li DL, Lewinger JP, Gauderman WJ, Murcray CE, Conti D (2011) Using extreme phenotype sampling to identify the rare causal variants of quantitative traits in association studies. Genet Epidemiol 35(8):790–799

    Article  PubMed  PubMed Central  Google Scholar 

  34. Peloso GM, Rader DJ, Gabriel S, Kathiresan S, Daly MJ, Neale BM (2016) Phenotypic extremes in rare variant study designs. Eur J Hum Genet 24(6):924–930

    Article  PubMed  Google Scholar 

  35. Al-Daghri NM, Alkharfy KM, Rahman S, Amer OE, Vinodson B, Sabico S, Piya MK, Harte AL, McTernan PG, Alokail MS et al (2014) Irisin as a predictor of glucose metabolism in children: sexually dimorphic effects. Eur J Clin Invest 44(2):119–124

    Article  PubMed  CAS  Google Scholar 

  36. Anastasilakis AD, Polyzos SA, Saridakis ZG, Kynigopoulos G, Skouvaklidou EC, Molyvas D, Vasiloglou MF, Apostolou A, Karagiozoglou-Lampoudi T, Siopi A et al (2014) Circulating irisin in healthy, young individuals: day-night rhythm, effects of food intake and exercise, and associations with gender, physical activity, diet, and body composition. J Clin Endocrinol Metab 99(9):3247–3255

    Article  PubMed  CAS  Google Scholar 

  37. Singhal V, Lawson EA, Ackerman KE, Fazeli PK, Clarke H, Lee H, Eddy K, Marengi DA, Derrico NP, Bouxsein ML et al (2014) Irisin levels are lower in young amenorrheic athletes compared with eumenorrheic athletes and non-athletes and are associated with bone density and strength estimates. PLoS ONE 9(6):e100218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Anastasilakis AD, Polyzos SA, Makras P, Gkiomisi A, Bisbinas I, Katsarou A, Filippaios A, Mantzoros CS (2014) Circulating irisin is associated with osteoporotic fractures in postmenopausal women with low bone mass but is not affected by either teriparatide or denosumab treatment for 3 months. Osteoporosis Int 25(5):1633–1642

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by Natural Science Foundation of China (81502868, 81373010, 81541068, 81473046, 31271336, 31401079, and 81401343), the Natural Science Foundation of Jiangsu Province (BK20130300, BK20150346), the Natural Science Research Project of Jiangsu Provincial Higher Education (16KJA330001), the Startup Fund from Soochow University (Q413900112, Q413900712), and a Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

LFW, DCZ, DFY, and SFL conceived and coordinated the study and wrote the paper. LFW, YHL, and BHW performed and analyzed the experiments. DCZ, CHT, BG, JS, PH, WYW, SQL, JZ, XZ, KZ, WJ, HQG, HBG, XL, LZ, and YHZ provided technical assistance and contributed to the preparation of sample. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Shu-Feng Lei.

Ethics declarations

Conflict of interest

Long-Fei Wu, Dong-Cheng Zhu, Chang-Hua Tang, Bing Ge, Ju Shi, Bing-Hua Wang, Yi-Hua Lu, Pei He, Wen-Yu Wang, Si-Qi Lu, Jiao Zhong, Xu Zhou, Kan Zhu, Wen Ji, Hong-Qin Gao, Hong-Bo Gu, Xing-Bo Mo, Xin Lu, Lei Zhang, Yong-Hong Zhang, Fei-Yan Deng, and Shu-Feng Lei declare no conflict of interest.

Human and Animal Rights and Informed Consent

The study was approved by Institutional Research Ethic Board at the Soochow University. All the participants provided written informed-consent documents before entering the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, LF., Zhu, DC., Tang, CH. et al. Association of Plasma Irisin with Bone Mineral Density in a Large Chinese Population Using an Extreme Sampling Design. Calcif Tissue Int 103, 246–251 (2018). https://doi.org/10.1007/s00223-018-0415-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-018-0415-3

Keywords

Navigation