Skip to main content

Advertisement

Log in

The potential role of lncRNAs in osteoporosis

  • Review Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Osteoporosis is a common bone disease characterized by low bone mass and deterioration of bone microstructure, which predisposes to higher risks of bone fragility and bone fracture. Long non-coding RNAs (lncRNAs) are a class of RNAs with a length of > 200 nucleotides without protein-coding function, which control the expression of genes and affect multiple biological processes. Accumulating evidence suggests that lncRNAs are widely involved in the molecular mechanisms of osteoporosis. This review aims to summarize the function and underlying mechanism of lncRNAs involved in the development of osteoporosis, and how it contributes to osteoblast and osteoclast function. This knowledge will shed new light on the modulation and potential treatment of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Black DM, Rosen CJ (2016) Clinical practice. Postmenopausal osteoporosis. N Engl J Med 374:254–262

    Article  CAS  PubMed  Google Scholar 

  2. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chang YF, Huang CF, Hwang JS, Kuo JF, Lin KM, Huang HC, Bagga S, Kumar A, Chen FP, Wu CH (2018) Fracture liaison services for osteoporosis in the Asia-Pacific region: current unmet needs and systematic literature review. Osteoporos Int 29:779–792

    Article  Google Scholar 

  4. Akhade VS, Pal D, Kanduri C (2017) Long noncoding RNA: genome organization and mechanism of action. Adv Exp Med Biol 1008:47–74

    Article  CAS  PubMed  Google Scholar 

  5. Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152:1298–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ma L, Bajic VB, Zhang Z (2013) On the classification of long non-coding RNAs. RNA Biol 10:925–933

    Article  PubMed  Google Scholar 

  7. Johnsson P, Lipovich L, Grandér D, Morris KV (2014) Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta 1840:1063–1071

    Article  CAS  PubMed  Google Scholar 

  8. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, Regev A, Lander ES, Rinn JL (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 106:11667–11672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159

    Article  CAS  PubMed  Google Scholar 

  11. Wang X, Song X, Glass CK, Rosenfeld MG (2011) The long arm of long noncoding RNAs: roles as sensors regulating gene transcriptional programs. Cold Spring Harb Perspect Biol 3:a003756

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shi X, Sun M, Liu H, Yao Y, Song Y (2013) Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett 339:159–166

    Article  CAS  PubMed  Google Scholar 

  13. Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23:1494–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang N, Hu X, He S, Ding W, Wang F, Zhao Y, Huang Z (2019) LncRNA MSC-AS1 promotes osteogenic differentiation and alleviates osteoporosis through sponging microRNA-140-5p to upregulate BMP2. Biochem Biophys Res Commun 519:790–796

    Article  CAS  PubMed  Google Scholar 

  15. Corrado A, Sanpaolo ER, Di Bello S, Cantatore FP (2017) Osteoblast as a target of anti-osteoporotic treatment. Postgrad Med 129:858–865

    Article  PubMed  Google Scholar 

  16. Gomathi K, Akshaya N, Srinaath N, Moorthi A, Selvamurugan N (2020) Regulation of Runx2 by post-translational modifications in osteoblast differentiation. Life Sci 245:117389

    Article  CAS  PubMed  Google Scholar 

  17. Komori T (2018) Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem Cell Biol 149:313–323

    Article  CAS  PubMed  Google Scholar 

  18. Raggatt LJ, Partridge NC (2010) Cellular and molecular mechanisms of bone remodeling. J Biol Chem 285:25103–25108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ono T, Nakashima T (2018) Recent advances in osteoclast biology. Histochem Cell Biol 149:325–341

    Article  CAS  PubMed  Google Scholar 

  20. Kim JH, Kim N (2016) Signaling pathways in osteoclast differentiation. Chonnam Med J 52:12–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Anesi A, Generali L, Sandoni L, Pozzi S, Grande A (2019) From osteoclast differentiation to osteonecrosis of the jaw: molecular and clinical insights. Int J Mol Sci 20:4925

    Article  CAS  PubMed Central  Google Scholar 

  22. Kim H-J, Kang WY, Seong SJ, Kim S-Y, Lim M-S, Yoon Y-R (2016) Follistatin-like 1 promotes osteoclast formation via RANKL-mediated NF-κB activation and M-CSF-induced precursor proliferation. Cell Signal 28:1137–1144

    Article  CAS  PubMed  Google Scholar 

  23. Park JH, Lee NK, Lee SY (2017) Current understanding of RANK signaling in osteoclast differentiation and maturation. Mol Cells 40:706–713

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Asagiri M, Sato K, Usami T, Ochi S, Nishina H, Yoshida H, Morita I, Wagner EF, Mak TW, Serfling E, Takayanagi H (2005) Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 202:1261–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang L, Wang Y, Li Z, Li Z, Yu B (2015) Differential expression of long noncoding ribonucleic acids during osteogenic differentiation of human bone marrow mesenchymal stem cells. Int Orthop 39:1013–1019

    Article  PubMed  Google Scholar 

  26. Liao J, Yu X, Hu X, Fan J, Wang J et al (2017) lncRNA H19 mediates BMP9-induced osteogenic differentiation of mesenchymal stem cells (MSCs) through Notch signaling. Oncotarget 8:53581–53601

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liang WC, Fu WM, Wang YB, Sun YX, Xu LL, Wong CW, Chan KM, Li G, Waye MM, Zhang JF (2016) H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA. Sci Rep 6:20121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gong YY, Peng MY, Yin DQ, Yang YF (2018) Long non-coding RNA H19 promotes the osteogenic differentiation of rat ectomesenchymal stem cells via Wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci 22:8805–8813

    PubMed  Google Scholar 

  29. Huang Y, Zheng Y, Jia L, Li W (2015) Long noncoding RNA H19 promotes osteoblast differentiation via TGF-β1/Smad3/HDAC signaling pathway by deriving miR-675. Stem Cells 33:3481–3492

    Article  CAS  PubMed  Google Scholar 

  30. Xiaoling G, Shuaibin L, Kailu L (2020) MicroRNA-19b-3p promotes cell proliferation and osteogenic differentiation of BMSCs by interacting with lncRNA H19. BMC Med Genet 21:11

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang X, Hamblin MH, Yin K-J (2017) The long noncoding RNA Malat 1: its physiological and pathophysiological functions. RNA Biol 14:1705–1714

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yi J, Liu D, Xiao J (2019) LncRNA MALAT1 sponges miR-30 to promote osteoblast differentiation of adipose-derived mesenchymal stem cells by promotion of Runx2 expression. Cell Tissue Res 376:113–121

    Article  CAS  PubMed  Google Scholar 

  33. Xiao X, Zhou T, Guo S, Guo C, Zhang Q, Dong N, Wang Y (2017) LncRNA MALAT1 sponges miR-204 to promote osteoblast differentiation of human aortic valve interstitial cells through up-regulating Smad4. Int J Cardiol 243:404–412

    Article  PubMed  Google Scholar 

  34. Gao Y, Xiao F, Wang C, Wang C, Cui P, Zhang X, Chen X (2018) Long noncoding RNA MALAT1 promotes osterix expression to regulate osteogenic differentiation by targeting miRNA-143 in human bone marrow-derived mesenchymal stem cells. J Cell Biochem 119:6986–6996

    Article  CAS  PubMed  Google Scholar 

  35. Zheng S, Wang YB, Yang YL, Chen BP, Wang CX, Li RH, Huang D (2019) LncRNA MALAT1 inhibits osteogenic differentiation of mesenchymal stem cells in osteoporosis rats through MAPK signaling pathway. Eur Rev Med Pharmacol Sci 23:4609–4617

    CAS  PubMed  Google Scholar 

  36. Yang X, Yang J, Lei P, Wen T (2019) LncRNA MALAT1 shuttled by bone marrow-derived mesenchymal stem cells-secreted exosomes alleviates osteoporosis through mediating microRNA-34c/SATB2 axis. Aging (Albany NY) 11:8777–8791

    Article  CAS  Google Scholar 

  37. Li H, Tian G, Tian F, Shao L (2018) Long non-coding RNA TUG1 promotes osteosarcoma cell proliferation and invasion through inhibition of microRNA-212-3p expression. Exp Ther Med 16:779–787

    PubMed  PubMed Central  Google Scholar 

  38. Yu C, Li L, Xie F, Guo S, Liu F, Dong N, Wang Y (2018) LncRNA TUG1 sponges miR-204-5p to promote osteoblast differentiation through upregulating Runx2 in aortic valve calcification. Cardiovasc Res 114:168–179

    Article  CAS  PubMed  Google Scholar 

  39. Liu SC, Sun QZ, Qiao XF, Li XG, Yang JH, Wang TQ, Xiao YJ, Qiao JM (2019) LncRNA TUG1 influences osteoblast proliferation and differentiation through the Wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci 23:4584–4590

    PubMed  Google Scholar 

  40. Zeng B, Li Y, Jiang F, Wei C, Chen G, Zhang W, Zhao W, Yu D (2019) LncRNA GAS5 suppresses proliferation, migration, invasion, and epithelial-mesenchymal transition in oral squamous cell carcinoma by regulating the miR-21/PTEN axis. Exp Cell Res 374:365–373

    Article  CAS  PubMed  Google Scholar 

  41. Wang X, Zhao D, Zhu Y, Dong Y, Liu Y (2019) Long non-coding RNA GAS5 promotes osteogenic differentiation of bone marrow mesenchymal stem cells by regulating the miR-135a-5p/FOXO1 pathway. Mol Cell Endocrinol 496:110534

    Article  CAS  PubMed  Google Scholar 

  42. Feng J, Wang JX, Li CH (2019) LncRNA GAS5 overexpression alleviates the development of osteoporosis through promoting osteogenic differentiation of MSCs via targeting microRNA-498 to regulate RUNX2. Eur Rev Med Pharmacol Sci 23:7757–7765

    CAS  PubMed  Google Scholar 

  43. Liu Y, Liu C, Zhang A, Yin S, Wang T, Wang Y, Wang M, Liu Y, Ying Q, Sun J, Wei F, Liu D, Wang C, Ge S (2019) Down-regulation of long non-coding RNA MEG3 suppresses osteogenic differentiation of periodontal ligament stem cells (PDLSCs) through miR-27a-3p/IGF1 axis in periodontitis. Aging (Albany NY) 11:5334–5350

    Article  CAS  Google Scholar 

  44. Wang Q, Li Y, Zhang Y, Ma L, Lin L, Meng J, Jiang L, Wang L, Zhou P, Zhang Y (2017) LncRNA MEG3 inhibited osteogenic differentiation of bone marrow mesenchymal stem cells from postmenopausal osteoporosis by targeting miR-133a-3p. Biomed Pharmacother 89:1178–1186

    Article  CAS  PubMed  Google Scholar 

  45. Zhuang W, Ge X, Yang S, Huang M, Zhuang W, Chen P, Zhang X, Fu J, Qu J, Li B (2015) Upregulation of lncRNA MEG3 promotes osteogenic differentiation of mesenchymal stem cells from multiple myeloma patients by targeting BMP4 transcription. Stem Cells 33:1985–1997

    Article  CAS  PubMed  Google Scholar 

  46. Jia Q, Chen X, Jiang W, Wang W, Guo B, Ni L (2016) The regulatory effects of long noncoding RNA-ANCR on dental tissue-derived stem cells. Stem Cells Int 2016:3146805

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhu L, Xu P-C (2013) Downregulated LncRNA-ANCR promotes osteoblast differentiation by targeting EZH2 and regulating Runx2 expression. Biochem Biophys Res Commun 432:612–617

    Article  CAS  PubMed  Google Scholar 

  48. Jani KS, Jain SU, Ge EJ, Diehl KL, Lundgren SM, Müller MM, Lewis PW, Muir TW (2019) Histone H3 tail binds a unique sensing pocket in EZH2 to activate the PRC2 methyltransferase. Proc Natl Acad Sci USA 116:8295–8300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cai N, Li C, Wang F (2019) Silencing of LncRNA-ANCR promotes the osteogenesis of osteoblast cells in postmenopausal osteoporosis via targeting EZH2 and RUNX2. Yonsei Med J 60:751–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Peng W, Deng W, Zhang J, Pei G, Rong Q, Zhu S (2018) Long noncoding RNA ANCR suppresses bone formation of periodontal ligament stem cells via sponging miRNA-758. Biochem Biophys Res Commun 503:815–821

    Article  CAS  PubMed  Google Scholar 

  51. Hajjari M, Salavaty A (2015) HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer Biol Med 12:1–9

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhou Q, Chen F, Fei Z, Zhao J, Liang Y, Pan W, Liu X, Zheng D (2016) Genetic variants of lncRNA HOTAIR contribute to the risk of osteosarcoma. Oncotarget 7:19928–19934

    Article  PubMed  PubMed Central  Google Scholar 

  53. Seamon J, Keller T, Saleh J, Cui Q (2012) The pathogenesis of nontraumatic osteonecrosis. Arthritis 2012:601763

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wei B, Wei W, Zhao B, Guo X, Liu S (2017) Long non-coding RNA HOTAIR inhibits miR-17-5p to regulate osteogenic differentiation and proliferation in non-traumatic osteonecrosis of femoral head. PLoS ONE 12:e0169097

    Article  PubMed  PubMed Central  Google Scholar 

  55. Shen JJ, Zhang CH, Chen ZW, Wang ZX, Yang DC, Zhang FL, Feng KH (2019) LncRNA HOTAIR inhibited osteogenic differentiation of BMSCs by regulating Wnt/β-catenin pathway. Eur Rev Med Pharmacol Sci 23:7232–7246

    PubMed  Google Scholar 

  56. Deng R, Zhang J, Chen J (2019) lncRNA SNHG1 negatively regulates miRNA-101-3p to enhance the expression of ROCK1 and promote cell proliferation, migration and invasion in osteosarcoma. Int J Mol Med 43:1157–1166

    CAS  PubMed  Google Scholar 

  57. Jiang Y, Wu W, Jiao G, Chen Y, Liu H (2019) LncRNA SNHG1 modulates p38 MAPK pathway through Nedd4 and thus inhibits osteogenic differentiation of bone marrow mesenchymal stem cells. Life Sci 228:208–214

    Article  CAS  PubMed  Google Scholar 

  58. Huang S, Zhu X, Xiao D, Zhuang J, Liang G, Liang C, Zheng X, Ke Y, Chang Y (2019) LncRNA SNHG1 was down-regulated after menopause and participates in postmenopausal osteoporosis. Biosci Rep 39:BSR20190445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li H-J, Sun X-M, Li Z-K, Yin Q-W, Pang H, Pan J-J, Li X, Chen W (2017) LncRNA UCA1 promotes mitochondrial function of bladder cancer via the MiR-195/ARL2 signaling pathway. Cell Physiol Biochem 43:2548–2561

    Article  CAS  PubMed  Google Scholar 

  60. Li W, Xie P, Ruan W-H (2016) Overexpression of lncRNA UCA1 promotes osteosarcoma progression and correlates with poor prognosis. J Bone Oncol 5:80–85

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang RF, Liu JW, Yu SP, Sun D, Wang XH, Fu JS, Xie Z (2019) LncRNA UCA1 affects osteoblast proliferation and differentiation by regulating BMP-2 expression. Eur Rev Med Pharmacol Sci 23:6774–6782

    PubMed  Google Scholar 

  62. Li D, Tian Y, Yin C, Huai Y, Zhao Y, Su P, Wang X, Pei J, Zhang K, Yang C, Dang K, Jiang S, Miao Z, Li M, Hao Q, Zhang G, Qian A (2019) Silencing of lncRNA AK045490 promotes osteoblast differentiation and bone formation via β-catenin/TCF1/Runx2 signaling axis. Int J Mol Sci 20:6229

    Article  CAS  PubMed Central  Google Scholar 

  63. Yin C, Tian Y, Yu Y, Wang H, Wu Z, Huang Z, Zhang Y, Li D, Yang C, Wang X, Li Y, Qian A (2019) A novel long noncoding RNA AK016739 inhibits osteoblast differentiation and bone formation. J Cell Physiol 234:11524–11536

    Article  CAS  PubMed  Google Scholar 

  64. Zhang C, Zhu Y, Liu Y, Zhang X, Yue Q, Li L, Chen Y, Lu S, Teng Z (2019) SEMA3B-AS1-inhibited osteogenic differentiation of human mesenchymal stem cells revealed by quantitative proteomics analysis. J Cell Physiol 234:2491–2499

    Article  CAS  PubMed  Google Scholar 

  65. Wang Y, Wang K, Zhang L, Tan Y, Hu Z, Dang L, Zhou H, Li G, Wang H, Zhang S, Shi F, Cao X, Zhang G (2020) Targeted overexpression of the long noncoding RNA ODSM can regulate osteoblast function in vitro and in vivo. Cell Death Dis 11:133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sun X, Yuan Y, Xiao Y, Lu Q, Yang L, Chen C, Guo Q (2018) Long non-coding RNA, Bmcob, regulates osteoblastic differentiation of bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 506:536–542

    Article  CAS  PubMed  Google Scholar 

  67. Dou C, Cao Z, Yang B, Ding N, Hou T, Luo F, Kang F, Li J, Yang X, Jiang H, Xiang J, Quan H, Xu J, Dong S (2016) Changing expression profiles of lncRNAs, mRNAs, circRNAs and miRNAs during osteoclastogenesis. Sci Rep 6:21499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu C, Cao Z, Bai Y, Dou C, Gong X, Liang M, Dong R, Quan H, Li J, Dai J, Kang F, Zhao C, Dong S (2019) LncRNA AK077216 promotes RANKL-induced osteoclastogenesis and bone resorption via NFATc1 by inhibition of NIP45. J Cell Physiol 234:1606–1617

    Article  CAS  PubMed  Google Scholar 

  69. Ling L, Hu HL, Liu KY, Ram YI, Gao JL, Cao YM (2019) Long noncoding RNA MIRG induces osteoclastogenesis and bone resorption in osteoporosis through negative regulation of miR-1897. Eur Rev Med Pharmacol Sci 23:10195–10203

    CAS  PubMed  Google Scholar 

  70. Wang Y, Luo TB, Liu L, Cui ZQ (2018) LncRNA LINC00311 promotes the proliferation and differentiation of osteoclasts in osteoporotic rats through the notch signaling pathway by targeting DLL3. Cell Physiol Biochem 47:2291–2306

    Article  CAS  PubMed  Google Scholar 

  71. Zhang X, Liang H, Kourkoumelis N, Wu Z, Li G, Shang X (2020) Comprehensive analysis of lncRNA and miRNA expression profiles and ceRNA network construction in osteoporosis. Calcif Tissue Int 106:343–354

    Article  CAS  PubMed  Google Scholar 

  72. Zhou Y, Xu C, Zhu W, He H, Zhang L, Tang B, Zeng Y, Tian Q, Deng HW (2019) Long noncoding RNA analyses for osteoporosis risk in Caucasian women. Calcif Tissue Int 105:183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yu H, Zhou W, Yan W, Xu Z, Xie Y, Zhang P (2019) LncRNA CASC11 is upregulated in postmenopausal osteoporosis and is correlated with TNF-α. Clin Interv Aging 14:1663–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gao GC, Yang DW, Liu W (2020) LncRNA TERC alleviates the progression of osteoporosis by absorbing miRNA-217 to upregulate RUNX2. Eur Rev Med Pharmacol Sci 24:526–534

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxia Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Chen, Y. The potential role of lncRNAs in osteoporosis. J Bone Miner Metab 39, 341–352 (2021). https://doi.org/10.1007/s00774-021-01205-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-021-01205-6

Keywords

Navigation