Skip to main content

Advertisement

Log in

Comprehensive Analysis of lncRNA and miRNA Expression Profiles and ceRNA Network Construction in Osteoporosis

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Multiple profiling studies have identified a number of non-coding RNAs associated with the pathogenesis of human diseases. However, the exact regulatory mechanisms and functions of these non-coding RNAs in the development of osteoporosis have not yet been explored. Transcriptome gene expression and miRNA microarray data from peripheral blood monocytes of five high hip bone mineral density (BMD) subjects and five low hip BMD subjects were analyzed. Differentially expressed mRNAs, lncRNAs, and miRNAs were identified and subjected to functional enrichment analysis. Additionally, protein–protein interaction (PPI), lncRNA–mRNA, and mRNA–lncRNA–miRNA competing endogenous RNA (ceRNA) networks were constructed. Differential analysis revealed that 297 mRNAs, 151 lncRNAs, and 38 miRNAs were significantly differentially expressed between peripheral blood monocytes from high and low hip BMD subjects. Key genes including ACLY, HSPA5, and AKT1 were subsequently identified in the PPI network. Additionally, differentially expressed lncRNAs were primarily enriched in the citrate cycle (TCA cycle), biosynthesis of antibiotics, and carbon metabolism pathways. Finally, the mRNA–lncRNA–miRNA network revealed several key ceRNA regulatory relationships among the transcripts and non-coding RNAs. Key mRNAs and non-coding RNAs identified in the networks represent potential biomarkers or targets in the diagnosis and management of osteoporosis. Our findings represent a resource for further functional research on the ceRNA regulation mechanism of non-coding RNA in osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets analyzed in the present study are available from the Gene Expression Omnibus repository, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35959.

References

  1. Lane NE (2006) Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol 194:S3–11

    Article  CAS  PubMed  Google Scholar 

  2. Ensrud KE, Crandall CJ (2017) Osteoporosis. Ann Intern Med 167:Itc17-itc32

  3. Bijelic R, Milicevic S, Balaban J (2017) Risk factors for osteoporosis in postmenopausal women. Med Arch (Sarajevo, Bosnia and Herzegovina) 71:25–28

    Google Scholar 

  4. You L, Pan L, Chen L, Gu W, Chen J (2016) MiR-27a is essential for the shift from osteogenic differentiation to adipogenic differentiation of mesenchymal stem cells in postmenopausal osteoporosis. Cell Physiol Biochem 39:253–265

    Article  CAS  PubMed  Google Scholar 

  5. McCormick RK (2007) Osteoporosis: integrating biomarkers and other diagnostic correlates into the management of bone fragility. Altern Med Rev 12:113–145

    PubMed  Google Scholar 

  6. Eastell R, Szulc P (2017) Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol 5:908–923

    Article  PubMed  Google Scholar 

  7. Szulc P, Naylor K, Hoyle NR, Eastell R, Leary ET (2017) Use of CTX-I and PINP as bone turnover markers: National Bone Health Alliance recommendations to standardize sample handling and patient preparation to reduce pre-analytical variability. Osteopor Int 28:2541–2556

    Article  CAS  Google Scholar 

  8. Dou C, Cao Z, Yang B et al (2016) Changing expression profiles of lncRNAs, mRNAs, circRNAs and miRNAs during osteoclastogenesis. Sci Rep 6:21499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Takao N, Tetsuro H (2013) Paraspeckle formation during the biogenesis of long non-coding RNAs. RNA Biol 10:456–461

    Article  CAS  Google Scholar 

  10. Mei B, Wang Y, Ye W, Huang H, Zhou Q, Chen Y, Niu Y, Zhang M, Huang Q (2019) LncRNA ZBTB40-IT1 modulated by osteoporosis GWAS risk SNPs suppresses osteogenesis. Hum Genet 138(2):151–166

    Article  CAS  PubMed  Google Scholar 

  11. Li W, Zhu H, Xu H, Zhang B, Huang S (2018) CRNDE impacts the proliferation of osteoclast by estrogen deficiency in postmenopausal osteoporosis. Eur Rev Med Pharmacol Sci 22:5815–5821

    CAS  PubMed  Google Scholar 

  12. Guan B-G, Cai X-X (2019) Abnormal sub-pathways competitively regulated by lncRNAs contribute to postmenopausal osteoporosis. Exp Ther Med 17:2894–2900

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Jing Q, Huang S, Guth S, Zarubin T, Motoyama A, Chen J, Di Padova F, Lin SC, Gram H, Han J (2005) Involvement of microRNA in AU-rich element-mediated mRNA stability. Cell 120:623–634

    Article  CAS  PubMed  Google Scholar 

  14. Cui Q, Xing J, Yu M, Wang Y, Xu J, Gu Y, Nan X, Ma W, Liu H, Zhao H (2019) Mmu-miR-185 depletion promotes osteogenic differentiation and suppresses bone loss in osteoporosis through the Bgn-mediated BMP/Smad pathway. Cell Death Dis 10:172

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lu X-D, Han W-X, Liu Y-X (2019) Suppression of miR-451a accelerates osteogenic differentiation and inhibits bone loss via Bmp6 signaling during osteoporosis. Biomed Pharmacother 120:109378

    Article  CAS  PubMed  Google Scholar 

  16. Gu H, Wu L, Chen H, Huang Z, Xu J, Zhou K, Zhang Y, Chen J, Xia J, Yin X (2019) Identification of differentially expressed microRNAs in the bone marrow of osteoporosis patients. Am J Transl Res 11:2940

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shao M (2017) Construction of an miRNA-regulated pathway network reveals candidate biomarkers for postmenopausal osteoporosis. Comput Math Methods Med 2017:9426280

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang J-D, Zhou H-S, Tu X-X, He Y, Liu Q-F, Liu Q, Long Z-J (2019) Prediction of competing endogenous RNA coexpression network as prognostic markers in AML. Aging (Albany, NY) 11:3333

    Article  CAS  Google Scholar 

  19. Wang C-G, Liao Z, Xiao H, Liu H, Hu Y-H, Liao Q-D, Zhong D (2019) LncRNA KCNQ1OT1 promoted BMP2 expression to regulate osteogenic differentiation by sponging miRNA-214. Exp Mol Pathol 107:77–84

    Article  CAS  PubMed  Google Scholar 

  20. Yang L, Li Y, Gong R, Gao M, Feng C, Liu T, Sun Y, Jin M, Wang D, Yuan Y (2019) The long non-coding RNA-ORLNC1 regulates bone mass by directing mesenchymal stem cell fate. Mol Ther 27:394–410

    Article  CAS  PubMed  Google Scholar 

  21. Zhang JG, Tan LJ, Xu C, He H, Tian Q, Zhou Y, Qiu C, Chen XD, Deng HW (2015) Integrative analysis of transcriptomic and epigenomic data to reveal regulation patterns for BMD variation. PLoS ONE 10:e0138524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wright GW, Simon RM (2003) A random variance model for detection of differential gene expression in small microarray experiments. Bioinformatics 19:2448–2455

    Article  CAS  PubMed  Google Scholar 

  23. Yang H, Crawford N, Lukes L, Finney R, Lancaster M, Hunter KW (2005) Metastasis predictive signature profiles pre-exist in normal tissues. Clin Exp Metastasis 22:593–603

    Article  CAS  PubMed  Google Scholar 

  24. Misha K, Patrick K, Culhane AC, Steffen D, Jan I, Christine KR, Meelis K, Aurora T, Ugis S, Jaak V (2004) Expression Profiler: next generation—an online platform for analysis of microarray data. Nucleic Acids Res 32:465–470

    Article  CAS  Google Scholar 

  25. Gene Ontology C (2006) The Gene Ontology (GO) project in 2006. Nucleic Acids Res 34:D322–326

    Article  CAS  Google Scholar 

  26. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Simson L, Mcalpine CH (1998) Awareness of osteoporosis risk factors and use of treatment. Age Ageing 27:17–17

    Article  Google Scholar 

  28. Liu HY, Wu AT, Tsai CY, Chou KR, Zeng R, Wang MF, Chang WC, Hwang SM, Su CH, Deng WP (2011) The balance between adipogenesis and osteogenesis in bone regeneration by platelet-rich plasma for age-related osteoporosis. Biomaterials 32:6773–6780

    Article  CAS  PubMed  Google Scholar 

  29. Lau EMC, Suriwongpaisal P, Lee JK, De SD, Festin MR, Saw SM, Khir A, Torralba T, Sham A, Sambrook P (2010) Risk factors for hip fracture in Asian men and women: The Asian Osteoporosis Study. J Bone Miner Res 16:572–580

    Article  Google Scholar 

  30. Zhou Y, Xu C, Zhu W, He H, Zhang L, Tang B, Zeng Y, Tian Q, Deng HW (2019) Long noncoding RNA analyses for osteoporosis risk in Caucasian women. Calcif Tissue Int 105:183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bidwell JP, Alvarez MB, Hood M, Childress P (2013) Functional impairment of bone formation in the pathogenesis of osteoporosis: the bone marrow regenerative competence. Curr Osteoporos Rep 11:117–125

    Article  PubMed  Google Scholar 

  32. Li C, Xiao Y, Yang M, Su T, Sun X, Guo Q, Huang Y, Luo XH (2018) Long noncoding RNA Bmncr regulates mesenchymal stem cell fate during skeletal aging. J Clin Investig 128:5251–5266

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liang WC, Fu WM, Wang YB, Sun YX, Xu LL, Wong CW, Chan KM, Li G, Waye MY, Zhang JF (2016) H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA. Sci Rep 6:20121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li B, Zhao J, Ma JX, Li GM, Zhang Y, Xing GS, Liu J, Ma XL (2018) Overexpression of DNMT1 leads to hypermethylation of H19 promoter and inhibition of Erk signaling pathway in disuse osteoporosis. Bone 111:82–91

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y, Luo TB, Liu L, Cui ZQ (2018) LncRNA LINC00311 promotes the proliferation and differentiation of osteoclasts in osteoporotic rats through the notch signaling pathway by targeting DLL3. Cell Physiol Biochem 47:2291

    Article  CAS  PubMed  Google Scholar 

  36. Bazilevsky GA, Affronti HC, Wei X, Campbell SL, Wellen KE, Marmorstein R (2019) ATP-citrate lyase multimerization is required for coenzyme-A substrate binding and catalysis. J Biol Chem 294:7259–7268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Teng L, Chen Y, Cao Y, Wang W, Xu Y, Wang Y, Lv J, Li C, Su Y (2018) Overexpression of ATP citrate lyase in renal cell carcinoma tissues and its effect on the human renal carcinoma cellsin vitro. Oncol Lett 15:6967–6974

    PubMed  PubMed Central  Google Scholar 

  38. Nicodemus KK, Folsom AR (2001) Type 1 and Type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care 24:1192–1197

    Article  CAS  PubMed  Google Scholar 

  39. Petit MA, Paudel ML, Taylor BC, Hughes JM, Strotmeyer ES, Schwartz AV, Cauley JA, Zmuda JM, Hoffman AR, Ensrud KE (2010) Bone mass and strength in older men with type 2 diabetes: the osteoporotic fractures in Men Study. J Bone Miner Res 25:285–291

    Article  PubMed  Google Scholar 

  40. Wongdee K, Charoenphandhu N (2011) Osteoporosis in diabetes mellitus: possible cellular and molecular mechanisms. World J Diabetes 2:41–48

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shi W, Xu G, Wang C, Sperber SM, Chen Y, Zhou Q, Deng Y, Zhao H (2015) Heat shock 70-kDa protein 5 (Hspa5) is essential for pronephros formation by mediating retinoic acid signaling. J Biol Chem 290:577–589

    Article  CAS  PubMed  Google Scholar 

  42. Guzel E, Basar M, Ocak N, Arici A, Kayisli UA (2011) Bidirectional interaction between unfolded-protein-response key protein HSPA5 and estrogen signaling in human endometrium. Biol Reprod 85:121–127

    Article  CAS  PubMed  Google Scholar 

  43. Chang YW, Tseng CF, Wang MY, Chang WC, Lee CC, Chen LT, Hung MC, Su JL (2016) Deacetylation of HSPA5 by HDAC6 leads to GP78-mediated HSPA5 ubiquitination at K447 and suppresses metastasis of breast cancer. Oncogene 35:1517–1528

    Article  CAS  PubMed  Google Scholar 

  44. Chen H, Xing J, Hu X, Chen L, Lv H, Xu C, Hong D, Wu X (2017) Inhibition of heat shock protein 90 rescues glucocorticoid-induced bone loss through enhancing bone formation. J Steroid Biochem Mol Biol 171:236

    Article  CAS  PubMed  Google Scholar 

  45. Daswani B, Gavali S, Desai M, Patil A, Khatkhatay M (2016) Serum levels of phosphorylated heat shock protein 27 (pHSP27) are associated with bone mineral density in pre- & postmenopausal women: a pilot study. Indian J Med Res 143:288–296

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rong PZ, Si JL, Wen BW, Hui LZ, Yao FF, Hui BR, Jin X, Wei S, Yi CZ, Shi YW (2016) Chlorogenic acid prevents osteoporosis by Shp2/PI3K/Akt pathway in ovariectomized rats. PLoS ONE 11:e0166751

    Article  CAS  Google Scholar 

  47. Mcmanus S, Bisson M, Chamberland R, Roy M, Nazari S, Roux S (2016) Autophagy and 3-phosphoinositide-dependent kinase 1 (PDK1)-related kinome in pagetic osteoclasts. J Bone Miner Res 31:1334–1343

    Article  CAS  PubMed  Google Scholar 

  48. Kawamura N, Kugimiya F, Oshima Y, Ohba S, Ikeda T, Saito T, Shinoda Y, Kawasaki Y, Ogata N, Hoshi K (2007) Akt1 in osteoblasts and osteoclasts controls bone remodeling. PLoS ONE 2(10):e1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aditi M, Wilson EM, Peter R (2010) Selective signaling by Akt2 promotes bone morphogenetic protein 2-mediated osteoblast differentiation. Mol Cell Biol 30:1018–1027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr. Donglin Cheng for his technical assistance.

Funding

This study is supported by the Fundamental Research Funds for the Central Universities (Grant No. WK9110000093) and National Natural Science Foundation of China (Grant No. 81902201).

Author information

Authors and Affiliations

Authors

Contributions

XFS conceived the idea and designed the project. NK performed the data analysis. XZZ and ZDW wrote the paper. HYL and GYL revised the manuscript. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Guoyuan Li or Xifu Shang.

Ethics declarations

Conflict of interest

Xianzuo Zhang, Haiyi Liang, Nikolaos Kourkoumelis, Zhaodong Wu, and Guoyuan Li and Xifu Shang declare that they have no conflict of interest.

Human and Animal Rights

The study was conducted in accordance with the 1964 Declaration of Helsinki and its later amendments. The study protocol has been approved by the Institutional Review Boards of The First Affiliated Hospital of USTC (University of Science and Technology of China).

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

223_2019_643_MOESM1_ESM.jpg

Supplementary Figure 1 The mRNA-lncRNA-miRNA pathway network. Green circular nodes represent mRNAs, green triangular nodes represent lncRNAs, red rectangular nodes represent miRNAs, and grey arrows represent pathways. Supplementary file1 (JPG 509 kb)

Supplementary file2 (JPG 84 kb)

Supplementary file3 (XLSX 13 kb)

Supplementary file4 (XLSX 26 kb)

Supplementary file5 (XLSX 6 kb)

Supplementary file6 (XLSX 216 kb)

Supplementary file7 (XLSX 78 kb)

Supplementary file8 (XLSX 33 kb)

Supplementary file9 (XLSX 57 kb)

Supplementary file10 (XLS 20 kb)

Supplementary file11 (XLS 199 kb)

Supplementary file12 (XLS 1209 kb)

Supplementary file13 (XLS 580 kb)

Supplementary file14 (XLS 719 kb)

Supplementary file15 (XLS 297 kb)

Supplementary file16 (XLS 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liang, H., Kourkoumelis, N. et al. Comprehensive Analysis of lncRNA and miRNA Expression Profiles and ceRNA Network Construction in Osteoporosis. Calcif Tissue Int 106, 343–354 (2020). https://doi.org/10.1007/s00223-019-00643-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-019-00643-9

Keywords

Navigation