Skip to main content

Advertisement

Log in

Pulp chamber features, prevalence of abscesses, disease severity, and PHEX mutation in X-linked hypophosphatemic rickets

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

Rickets, growth failure, and recurrent periapical abscesses with fistulae are main signs in patients with X-linked hypophosphatemic rickets (XLH). Prevalence of abscesses, pulp chamber features, biochemical findings, disease severity, and PHEX gene mutation were examined.

Materials and methods

Pulp chambers size, shape, and morphology were assessed by orthopantomography in XLH patients (n = 24, age 5.8 ± 1.6 years) and in sex and age-matched healthy controls (n = 23, age 6.2 ± 1.4 years). XLH patients received conventional treatment (3.5 ± 1.9 years). Pulp chamber features were assessed in teeth of primary dentition and in the permanent left mandibular first molar and compared with those of controls. Rickets severity score was assessed at wrist, knee, and ankle.

Results

The mean pulp chamber area/tooth area ratio, mean pulp chamber height/pulp chamber width ratio, and prominence of pulp horns into the tooth crown in primary and secondary molars were significantly higher in patients than in controls and in patients suffered abscesses than in patients without abscesses. Sixteen patients (67%) had a history of abscesses; incisors were affected more than canines and molars. Severity of rickets and mean serum parathyroid hormone (PTH) levels were significantly higher, and mean serum 1,25-dihydroxyvitamin D [1,25(OH)2D] levels significantly lower in patients suffered abscesses than in patients without abscesses. PHEX gene mutations were not correlated with dental phenotype and disease severity.

Conclusion

Enlarged pulp chambers with altered shape and morphology affected the majority of XLH patients predisposing to recurrent periapical abscesses with fistulae. Dental phenotype was associated with severity of rickets, high serum PTH, and low serum 1,25(OH)2D levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Imel EA, Econs MJ (2005) Fibroblast growth factor 23: roles in health and disease. J Am Soc Nephrol 16:2565–2575

    CAS  PubMed  Google Scholar 

  2. Emma F, Haffner D (2018) FGF23 blockade coming to clinical practice. Kidney Int 94:846–848

    PubMed  Google Scholar 

  3. Haffner D, Emma F, Eastwood DM, Duplan MB, Bacchetta J et al (2019) Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat Rev Nephrol 15:435–455

    PubMed  PubMed Central  Google Scholar 

  4. Carpenter TO (2012) The expanding family of hypophosphatemic syndromes. J Bone Miner Metab 30:1–9

    CAS  PubMed  Google Scholar 

  5. Shields ED, Scriver CR, Reade T, Fujiwara TM, Morgan K, Ciampi A, Schwartz S (1990) X-linked hypophosphatemia: the mutant gene is expressed in teeth as well as in kidney. Am J Hum Genet 46:434–442

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ruchon AR, Marcinkiewicz M, Siegfried G, Tenenhouse HS, DesGroseillers L, Crine P, Boileau G (1998) Pex mRNA is localized in developing mouse osteoblasts and odontoblasts. J Histochem Cytochem 46:459–468

    CAS  PubMed  Google Scholar 

  7. Wesseling-Perry K (2010) FGF-23 in bone biology. Pediatr Nephrol 25:603–608

    PubMed  Google Scholar 

  8. Baroncelli GI, Toschi B, Bertelloni S (2012) Hypophosphatemic rickets. Curr Opin Endocrinol Diabetes Obes 19:460–467

    CAS  PubMed  Google Scholar 

  9. Wang H, Yoshiko Y, Yamamoto R, Minamizaki T, Kozai K, Tanne K, Aubin JE, Maeda N (2008) Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. J Bone Miner Res 23:939–948

    CAS  PubMed  Google Scholar 

  10. Onishi T, Umemura S, Shintani S, Ooshima T (2008) Phex mutation causes overexpression of FGF23 in teeth. Arch Oral Biol 53:99–104

    CAS  PubMed  Google Scholar 

  11. Lv H, Fub S, Wuc G, Yan F (2011) PHEX neutralizing agent inhibits dentin formation in mouse tooth germ. Tissue Cell 43:125–130

    CAS  PubMed  Google Scholar 

  12. Linglart A, Biosse-Duplan M, Briot K, Chaussain C, Esterle L, Guillaume-Czitrom S, Kamenicky P, Nevoux J, Prié D, Rothenbuhler A, Wicart P, Harvengt P (2014) Therapeutic management of hypophosphatemic rickets from infancy to adulthood. Endocr Connect 3:R13–R30

    PubMed  PubMed Central  Google Scholar 

  13. Carpenter TO, Whyte MP, Imel EA, Boot AM, Högler W, Linglart A, Padidela R, van’t Hoff W, Mao M, Chen CY, Skrinar A, Kakkis E, San Martin J, Portale AA (2018) Burosumab therapy in children with X-linked hypophosphatemia. N Engl J Med 378:1987–1998

    CAS  PubMed  Google Scholar 

  14. Chaussain-Miller C, Sinding C, Wolikow M, Lasfargues JJ, Godeau G, Garabedian M (2003) Dental abnormalities in patients with familial hypophosphatemic vitamin D-resistant rickets: prevention by early treatment with 1-hydroxyvitamin D. J Pediatr 142:324–331

    CAS  PubMed  Google Scholar 

  15. Baroncelli GI, Angiolini M, Ninni E, Galli V, Saggese R, Giuca MR (2006) Prevalence and pathogenesis of dental and periodontal lesions in children with X-linked hypophosphatemic rickets. Eur J Paediatr Dent 7:61–66

    CAS  PubMed  Google Scholar 

  16. Carpenter TO, Imel EA, Holm IA, Jan de Beur SM, Insogna KL (2011) A clinician’s guide to X-linked hypophosphatemia. J Bone Miner Res 26:1381–1388

    PubMed  PubMed Central  Google Scholar 

  17. Morey M, Castro-Feijóo L, Barreiro J, Cabanas P, Pombo M et al (2011) Genetic diagnosis of X-linked dominant hypophosphatemic rickets in a cohort study: tubular reabsorption of phosphate and 1,25(OH)2D serum levels are associated with PHEX mutation type. BMC Med Genet 12:116

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang C, Zhao Z, Sun Y, Xu L, JiaJue R et al (2019) Clinical and genetic analysis in a large Chinese cohort of patients with X-linked hypophosphatemia. Bone 121:212–220

    CAS  PubMed  Google Scholar 

  19. Freeman JV, Cole TJ, Chinn S, Jones PRM, White EM, Preece MA (1995) Cross sectional stature and weight reference curves for the UK, 1990. Arch Dis Child 73:7–24

    Google Scholar 

  20. Stark H, Eisenstein B, Tieder M, Rachmel A, Alpert G (1986) Direct measurement of TP/GFR: a simple and reliable parameter of renal phosphate handling. Nephron 44:125–128

    CAS  PubMed  Google Scholar 

  21. International Standards ISO-3950:2016. Dentistry-Designation system for teeth and areas of the oral cavity. Fourth Edition, March 15, 2016, ISO copyright office Ch. de Blandonnet 8, CP 401 CH-1214 Vernier, Geneva, Switzerland

  22. Cameriere R, De Luca S, Alemán I, Ferrante L, Cingolani M (2012) Age estimation by pulp/tooth ratio in lower premolars by orthopantomography. Forensic Sci Int 214:105–112

    PubMed  Google Scholar 

  23. Thacher TD, Fischer PR, Pettifor JM, Lawson JO, Manaster BJ, Reading JC (2000) Radiographic scoring method for the assessment of the severity of nutritional rickets. J Trop Pediatr 46:132–139

    CAS  PubMed  Google Scholar 

  24. Thacher TD, Pettifor JM, Tebben PJ, Creo AL, Skrinar A, Mao M, Chen CY, Chang T, San Martin J, Carpenter TO (2019) Rickets severity predicts clinical outcomes in children with X-linked hypophosphatemia: utility of the radiographic rickets severity score. Bone 122:76–81

    PubMed  Google Scholar 

  25. Sabharwal S, Zhao C (2009) The hip–knee–ankle angle in children: reference values based on a full-length standing radiograph. J Bone Joint Surg Am 91:2461–3246

    PubMed  Google Scholar 

  26. Boukpessi T, Septier D, Bagga S, Garabedian M, Goldberg M, Chaussain-Miller C (2006) Dentin alteration of deciduous teeth in human hypophosphatemic rickets. Calcif Tissue Int 79:294–300

    CAS  PubMed  Google Scholar 

  27. Chaussain-Miller C, Sinding C, Septier D, Wolikow M, Goldberg M, Garabedian M (2007) Dentin structure in familial hypophosphatemic rickets: benefits of vitamin D and phosphate treatment. Oral Dis 13:482–489

    CAS  PubMed  Google Scholar 

  28. Cremonesi I, Nucci C, D’Alessandro G, Alkhamis N, Marchionni S, Piana G (2014) X-linked hypophosphatemic rickets: enamel abnormalities and oral clinical findings. Scanning 36:456–461

    PubMed  Google Scholar 

  29. Arangannal P, Chandra B, Hariharan VS, Vishnurekha C, Jeevarathan J, Vijayaprabha K (2012) Enamel thickness in primary teeth. J Clin Pediatr Dent 37:177–181

    PubMed  Google Scholar 

  30. Baroncelli GI, Bertelloni S, Sodini F, Galli L, Vanacore T, Fiore L, Saggese G (2004) Genetic advances, biochemical and clinical features and critical approach to treatment of patients with X-linked hypophosphatemic rickets. Pediatr Endocrinol Rev 1:361–379

    PubMed  Google Scholar 

  31. Zivičnjak M, Schnabel D, Billing H, Staude H, Filler G, Querfeld U, Schumacher M, Pyper A, Schröder C, Brämswig J, Haffner D (2011) Hypophosphatemic Rickets Study Group of Arbeitsgemeinschaft für Pädiatrische Endokrinologie and Gesellschaft für Pädiatrische Nephrologie, Age-related stature and linear body segments in children with X-linked hypophosphatemic rickets. Pediatr Nephrol 26:223–231

    PubMed  Google Scholar 

  32. Santos F, Fuente R, Mejia N, Mantecon L, Gil-Peña H, Ordoñez FA (2013) Hypophosphatemia and growth. Pediatr Nephrol 28:595–603

    PubMed  Google Scholar 

  33. Mäkitie O, Doria A, Kooh SW, Cole WG, Daneman A, Sochett E (2003) Early treatment improves growth and biochemical and radiographic outcome in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab 88:3591–3597

    PubMed  Google Scholar 

  34. Ariceta G, Langman CB (2007) Growth in X-linked hypophosphatemic rickets. Eur J Pediatr 166:303–309

    CAS  PubMed  Google Scholar 

  35. Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373

    CAS  PubMed  Google Scholar 

  36. Liu H, Guo J, Wang L, Chen N, Karaplis A, Goltzman D, Miao D (2009) Distinctive anabolic roles of 1,25-dihydroxyvitamin D3 and parathyroid hormone in teeth and mandible versus long bones. J Endocrinol 203:203–213

    CAS  PubMed  Google Scholar 

  37. Ruspita I (2015) The effect of 1,25-dihydroxyvitamin D3 on MSX2 gene expression during tooth and alveolar bone development. Dent J 48:43–47

    Google Scholar 

  38. Coyac BR, Guillaume F, Baroukh B, Slimani L, Sadoine J, Guillaume P, Biosse- Duplan M, Schinke T, Linglart A, McKee MD, Chaussain C, Bardet C (2017) Tissue-specific mineralization defects in the periodontium of the Hyp mouse model of X-linked hypophosphatemia. Bone 103:334–346

    CAS  PubMed  Google Scholar 

  39. Ogawa T, Onishi T, Hayashibara T, Sakashita S, Okawa R, Ooshima T (2006) Dentinal defects in Hyp mice not caused by hypophosphatemia alone. Arch Oral Biol 51:58–63

    CAS  PubMed  Google Scholar 

  40. Boukpessi T, Gaucher C, Léger T, Salmon B, Le Faouder J, Willig C, Rowe PS, Garabédian M, Meilhac O, Chaussain C (2010) Abnormal presence of the matrix extracellular phosphoglycoprotein-derived acidic serine- and aspartate-rich motif peptide in human hypophosphatemic dentin. Am J Pathol 177:803–812

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Salmon B, Bardet C, Coyac BR, Baroukh B, Naji J, Rowe PS, Opsahl VS, Linglart A, Mckee MD, Chaussain C (2014) Abnormal osteopontin and matrix extracellular phosphoglycoprotein localization, and odontoblast differentiation X-linked hypophosphatemic teeth. Connect Tissue Res 55:79–82

    CAS  PubMed  Google Scholar 

  42. Marie PJ, Glorieux FH (1983) Relation between hypomineralized periosteocytic lesions and bone mineralization in vitamin D-resistant rickets. Calcif Tissue Int 35:443–448

    CAS  PubMed  Google Scholar 

  43. Barros NM, Hoac B, Neves RL, Addison WN, Assis DM, MurshedM CAK, McKee MD (2013) Proteolytic processing of osteopontin by PHEX and accumulation of osteopontin fragments in Hyp mouse bone, the murine model of X-linked hypophosphatemia. J Bone Miner Res 28:688–699

    CAS  PubMed  Google Scholar 

  44. Boukpessi T, Hoac B, Coyac BR, Leger T, Garcia C, Wicart P, Whyte MP, Glorieux FH, Linglart A, Chaussain C, McKee MD (2017) Osteopontin and the dento-osseous pathobiology of X-linked hypophosphatemia. Bone 95:151–161

    CAS  PubMed  Google Scholar 

  45. Salmon B, Bardet C, Khaddam M, Naji J, Coyac BR, Baroukh B, Letourneur F, Lesieur J, Decup F, Le Denmat D, Nicoletti A, Poliard A, Rowe PS, Huet E, Vital SO, Linglart A, McKee MD, Chaussain C (2013) MEPE-derived ASARM peptide inhibits odontogenic differentiation of dental pulp stem cells and impairs mineralization in tooth models of X-linked hypophosphatemia. PLoS ONE 8:e56749

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Murali SK, Andrukhova O, Clinkenbeard EL, White KE, Erben RG (2016) Excessive osteocytic Fgf23 secretion contributes to pyrophosphate accumulation and mineralization defect in Hyp mice. PLoS Biol 14:e1002427

    PubMed  PubMed Central  Google Scholar 

  47. Robinson ME, AlQuorain H, Murshed M, Rauch R (2019) Mineralized tissues in hypophosphatemic rickets. Pediatr Nephrol. https://doi.org/10.1007/s00467-019-04290-y(inpress)

    Article  PubMed  Google Scholar 

  48. Souza MA, Soares LA, Santos MA, Vaisbich MH (2010) Dental abnormalities and oral health in patients with hypophosphatemic rickets. Clinics (Sao Paulo) 65:1023–1026

    Google Scholar 

  49. Connor J, Olear EA, Insogna KL, Katz L, Baker S, Kaur R, Simpson CA, Sterpka J, Dubrow R, Zhang JH, Carpenter TO (2015) Conventional therapy in adults with X-linked hypophosphatemia: effects on enthesopathy and dental disease. J Clin Endocrinol Metab 100:3625–3632

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Biosse Duplan M, Coyac BR, Bardet C, Zadikian C, Rothenbuhler A, Kamenicky AP, Briot K, Linglart A, Chaussain C (2017) Phosphate and vitamin D prevent periodontitis in X-linked hypophosphatemia. J Dent Res 96:388–395

    CAS  PubMed  Google Scholar 

  51. Fong H, Chu EY, Tompkins KA, Foster BL, Sitara D, Lanske B, Somerman MJ (2009) Aberrant cementum phenotype associated with the hypophosphatemic Hyp mouse. J Periodontol 80:1348–1354

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Capelli S, Donghi V, Maruca K, Vezzoli G, Corbetta S, Brandi ML, Mora S, Weber G (2015) Clinical and molecular heterogeneity in a large series of patients with hypophosphatemic rickets. Bone 79:143–149

    CAS  PubMed  Google Scholar 

  53. Rafaelsen S, Johansson S, Ræder H, Bjerknes R (2016) Hereditary hypophosphatemia in Norway: a retrospective population-based study of genotypes, phenotypes, and treatment complications. Eur J Endocrinol 174:125–136

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampiero I. Baroncelli.

Ethics declarations

Conflict of interest

This work was not sponsored. The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 55548 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baroncelli, G.I., Zampollo, E., Manca, M. et al. Pulp chamber features, prevalence of abscesses, disease severity, and PHEX mutation in X-linked hypophosphatemic rickets. J Bone Miner Metab 39, 212–223 (2021). https://doi.org/10.1007/s00774-020-01136-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-020-01136-8

Keywords

Navigation