Skip to main content

Advertisement

Log in

Bone: a key aspect to understand phenomena in clinical hematology

  • Review Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The bone marrow (BM) is located inside the bone. Now, it appears that bone tissue functionally communicates with the BM hematopoietic system. Osteoblast lineage cells serve as a part of the microenvironment for immature hematopoietic (stem/progenitor) cells. In contrast, mature hematopoietic cells such as neutrophils and macrophages play a critical role to regulate osteoblast activity. A progressive distortion of this precise inter-organ communication between hematopoietic and skeletal systems may lead to hematologic disorders. Recent studies have revealed that vitamin D receptor is a pivotal bridging molecule for this network and for the pathogenesis of myelofibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Asada N, Katayama Y (2014) Regulation of hematopoiesis in endosteal microenvironments. Int J Hematol 99:679–684

    Article  CAS  Google Scholar 

  2. Asada N, Sato M, Katayama Y (2015) Communication of bone cells with hematopoiesis, immunity and energy metabolism. Bonekey Rep 4:748

    Article  CAS  Google Scholar 

  3. Bowers M, Zhang B, Ho Y, Agarwal P, Chen CC, Bhatia R (2015) Osteoblast ablation reduces normal long-term hematopoietic stem cell self-renewal but accelerates leukemia development. Blood 125:2678–2688

    Article  CAS  Google Scholar 

  4. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    Article  CAS  Google Scholar 

  5. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841

    Article  CAS  Google Scholar 

  6. Holig K, Kramer M, Kroschinsky F, Bornhauser M, Mengling T, Schmidt AH, Rutt C, Ehninger G (2009) Safety and efficacy of hematopoietic stem cell collection from mobilized peripheral blood in unrelated volunteers: 12 years of single-center experience in 3928 donors. Blood 114:3757–3763

    Article  Google Scholar 

  7. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, Frenette PS (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124:407–421

    Article  CAS  Google Scholar 

  8. Lucas D, Bruns I, Battista M, Mendez-Ferrer S, Magnon C, Kunisaki Y, Frenette PS (2012) Norepinephrine reuptake inhibition promotes mobilization in mice: potential impact to rescue low stem cell yields. Blood 119:3962–3965

    Article  CAS  Google Scholar 

  9. Asada N, Katayama Y, Sato M, Minagawa K, Wakahashi K, Kawano H, Kawano Y, Sada A, Ikeda K, Matsui T, Tanimoto M (2013) Matrix-embedded osteocytes regulate mobilization of hematopoietic stem/progenitor cells. Cell Stem Cell 12:737–747

    Article  CAS  Google Scholar 

  10. Sato M, Asada N, Kawano Y, Wakahashi K, Minagawa K, Kawano H, Sada A, Ikeda K, Matsui T, Katayama Y (2013) Osteocytes regulate primary lymphoid organs and fat metabolism. Cell Metab 18:749–758

    Article  CAS  Google Scholar 

  11. Yoshizawa T, Handa Y, Uematsu Y, Takeda S, Sekine K, Yoshihara Y, Kawakami T, Arioka K, Sato H, Uchiyama Y, Masushige S, Fukamizu A, Matsumoto T, Kato S (1997) Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet 16:391–396

    Article  CAS  Google Scholar 

  12. Kawamori Y, Katayama Y, Asada N, Minagawa K, Sato M, Okamura A, Shimoyama M, Nakagawa K, Okano T, Tanimoto M, Kato S, Matsui T (2010) Role for vitamin D receptor in the neuronal control of the hematopoietic stem cell niche. Blood 116:5528–5535

    Article  CAS  Google Scholar 

  13. Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y, Tesio M, Samstein RM, Goichberg P, Spiegel A, Elson A, Lapidot T (2006) Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 12:657–664

    Article  CAS  Google Scholar 

  14. Takamatsu Y, Simmons PJ, Moore RJ, Morris HA, To LB, Levesque JP (1998) Osteoclast-mediated bone resorption is stimulated during short-term administration of granulocyte colony-stimulating factor but is not responsible for hematopoietic progenitor cell mobilization. Blood 92:3465–3473

    Article  CAS  Google Scholar 

  15. Kawano Y, Fukui C, Shinohara M, Wakahashi K, Ishii S, Suzuki T, Sato M, Asada N, Kawano H, Minagawa K, Sada A, Furuyashiki T, Uematsu S, Akira S, Ueda T, Narumiya S, Matsui T, Katayama Y (2017) G-CSF-induced sympathetic tone provokes fever and primes antimobilizing functions of neutrophils via PGE2. Blood 129:587–597

    Article  CAS  Google Scholar 

  16. Sinder BP, Pettit AR, McCauley LK (2015) Macrophages: their emerging roles in bone. J Bone Miner Res 30:2140–2149

    Article  Google Scholar 

  17. Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, Maylin ER, Ripoll VM, Hume DA, Pettit AR (2008) Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 181:1232–1244

    Article  CAS  Google Scholar 

  18. Burnett SH, Beus BJ, Avdiushko R, Qualls J, Kaplan AM, Cohen DA (2006) Development of peritoneal adhesions in macrophage depleted mice. J Surg Res 131:296–301

    Article  CAS  Google Scholar 

  19. Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F, Poulton IJ, van Rooijen N, Alexander KA, Raggatt LJ, Levesque JP (2010) Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116:4815–4828

    Article  CAS  Google Scholar 

  20. Cho SW, Soki FN, Koh AJ, Eber MR, Entezami P, Park SI, van Rooijen N, McCauley LK (2014) Osteal macrophages support physiologic skeletal remodeling and anabolic actions of parathyroid hormone in bone. Proc Natl Acad Sci USA 111:1545–1550

    Article  CAS  Google Scholar 

  21. Vi L, Baht GS, Whetstone H, Ng A, Wei Q, Poon R, Mylvaganam S, Grynpas M, Alman BA (2015) Macrophages promote osteoblastic differentiation in-vivo: implications in fracture repair and bone homeostasis. J Bone Miner Res 30:1090–1102

    Article  CAS  Google Scholar 

  22. Guihard P, Danger Y, Brounais B, David E, Brion R, Delecrin J, Richards CD, Chevalier S, Redini F, Heymann D, Gascan H, Blanchard F (2012) Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling. Stem Cells 30:762–772

    Article  CAS  Google Scholar 

  23. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E et al (2013) Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 369:2379–2390

    Article  CAS  Google Scholar 

  24. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G et al (2013) Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 369:2391–2405

    Article  CAS  Google Scholar 

  25. Tefferi A (2000) Myelofibrosis with myeloid metaplasia. N Engl J Med 342:1255–1265

    Article  CAS  Google Scholar 

  26. Decker M, Martinez-Morentin L, Wang G, Lee Y, Liu Q, Leslie J, Ding L (2017) Leptin-receptor-expressing bone marrow stromal cells are myofibroblasts in primary myelofibrosis. Nat Cell Biol 19:677–688

    Article  CAS  Google Scholar 

  27. Kramann R, Schneider RK (2018) The identification of fibrosis-driving myofibroblast precursors reveals new therapeutic avenues in myelofibrosis. Blood 131:2111–2119

    Article  CAS  Google Scholar 

  28. Schneider RK, Mullally A, Dugourd A, Peisker F, Hoogenboezem R, Van Strien PMH, Bindels EM, Heckl D, Busche G, Fleck D, Muller-Newen G, Wongboonsin J, Ventura Ferreira M, Puelles VG, Saez-Rodriguez J, Ebert BL, Humphreys BD, Kramann R (2017) Gli1(+) mesenchymal stromal cells are a key driver of bone marrow fibrosis and an important cellular therapeutic target. Cell Stem Cell 20:785–800

    Article  CAS  Google Scholar 

  29. Chagraoui H, Komura E, Tulliez M, Giraudier S, Vainchenker W, Wendling F (2002) Prominent role of TGF-beta 1 in thrombopoietin-induced myelofibrosis in mice. Blood 100:3495–3503

    Article  CAS  Google Scholar 

  30. Kakumitsu H, Kamezaki K, Shimoda K, Karube K, Haro T, Numata A, Shide K, Matsuda T, Oshima K, Harada M (2005) Transgenic mice overexpressing murine thrombopoietin develop myelofibrosis and osteosclerosis. Leuk Res 29:761–769

    Article  CAS  Google Scholar 

  31. Chagraoui H, Tulliez M, Smayra T, Komura E, Giraudier S, Yun T, Lassau N, Vainchenker W, Wendling F (2003) Stimulation of osteoprotegerin production is responsible for osteosclerosis in mice overexpressing TPO. Blood 101:2983–2989

    Article  CAS  Google Scholar 

  32. Wakahashi K, Minagawa K, Kawano Y, Kawano H, Suzuki T, Ishii S, Sada A, Asada N, Sato M, Kato S, Shide K, Shimoda K, Matsui T, Katayama Y (2019) Vitamin D receptor-mediated skewed differentiation of macrophages initiates myelofibrosis and subsequent osteosclerosis. Blood 133:1619–1629

    Article  CAS  Google Scholar 

  33. Shide K, Shimoda HK, Kumano T, Karube K, Kameda T, Takenaka K, Oku S, Abe H, Katayose KS, Kubuki Y, Kusumoto K, Hasuike S, Tahara Y, Nagata K, Matsuda T, Ohshima K, Harada M, Shimoda K (2008) Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F. Leukemia 22:87–95

    Article  CAS  Google Scholar 

  34. Pardanani A, Drake MT, Finke C, Lasho TL, Rozell SA, Jimma T, Tefferi A (2011) Vitamin D insufficiency in myeloproliferative neoplasms and myelodysplastic syndromes: clinical correlates and prognostic studies. Am J Hematol 86:1013–1016

    Article  CAS  Google Scholar 

  35. Overbergh L, Decallonne B, Valckx D, Verstuyf A, Depovere J, Laureys J, Rutgeerts O, Saint-Arnaud R, Bouillon R, Mathieu C (2000) Identification and immune regulation of 25-hydroxyvitamin D-1-alpha-hydroxylase in murine macrophages. Clin Exp Immunol 120:139–146

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported in part by a CREST grant from AMED (JP18gm0910012h2 to Y.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Katayama.

Ethics declarations

Conflict of interest

The author has no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakahashi, K., Katayama, Y. Bone: a key aspect to understand phenomena in clinical hematology. J Bone Miner Metab 38, 145–150 (2020). https://doi.org/10.1007/s00774-019-01075-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-019-01075-z

Keywords

Navigation