Skip to main content

Advertisement

Log in

Mutation spectrum of COL1A1/COL1A2 screening by high-resolution melting analysis of Chinese patients with osteogenesis imperfecta

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

High-resolution melting (HRM) analysis has been shown to be a time-saving method for the screening of genetic variants. To increase the precision of the diagnosis of osteogenesis imperfecta (OI), we used HRM to explore COL1A1/COL1A2 mutations in 87 Chinese OI patients and to perform population-based studies of the relationships between their genotypes and phenotypes. Peripheral blood samples were collected from the 87 non-consanguineous probands. The coding regions and exon boundaries of COL1A1/COL1A2 were detected by HRM and confirmed by Sanger sequencing. The functional effects of mutations were predicted through bioinformatic tools. Mutations were detected in 70.3% of familial cases and 40% of sporadic cases (p < 0.01). Compared with COL1A1 mutations, patients with COL1A2 mutations were more prone to severe phenotypes. Helical mutations (caused by substitution of the glycine within the Gly–X–Y triplet domain) were more likely to occur in patients with type III and IV (p < 0.05). Haploinsufficiency mutations (caused by frameshift, nonsense, and splice-site mutations) appeared more frequently in patients with type I (p < 0.05). Compared with the Sanger sequencing and whole exome sequencing (WES), HRM was found to reduce total costs by 78%– 80% in patients who had a positive HRM separate melting curve. Our findings suggest that HRM would greatly benefit small and understaffed hospitals and laboratories, and would facilitate the accurate diagnosis and early treatment of OI in remote and less developed regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Glorieux FH (2008) Osteogenesis imperfecta. Best Pract Res Clin Rheumatol 22:85–100. https://doi.org/10.1016/j.berh.2007.12.012

    Article  CAS  PubMed  Google Scholar 

  2. Van Dijk FS, Sillence DO (2014) Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A 164A:1470–1481. https://doi.org/10.1002/ajmg.a.36545

    Article  PubMed  Google Scholar 

  3. Bodian DL, Chan TF, Poon A, Schwarze U, Yang K, Byers PH, Kwok PY, Klein TE (2009) Mutation and polymorphism spectrum in osteogenesis imperfecta type II: implications for genotype-phenotype relationships. Hum Mol Genet 18:463–471. https://doi.org/10.1093/hmg/ddn374

    Article  CAS  PubMed  Google Scholar 

  4. Fraser RD, MacRae TP, Suzuki E (1979) Chain conformation in the collagen molecule. J Mol Biol 129:463–481

    Article  CAS  PubMed  Google Scholar 

  5. Bhate M, Wang X, Baum J, Brodsky B (2002) Folding and conformational consequences of glycine to alanine replacements at different positions in a collagen model peptide. Biochemistry 41:6539–6547

    Article  CAS  PubMed  Google Scholar 

  6. van Dijk FS, Byers PH, Dalgleish R, Malfait F, Maugeri A, Rohrbach M, Symoens S, Sistermans EA, Pals G (2012) EMQN best practice guidelines for the laboratory diagnosis of osteogenesis imperfecta. Eur J Hum Genet 20:11–19. https://doi.org/10.1038/ejhg.2011.141

    Article  CAS  PubMed  Google Scholar 

  7. Van Dijk FS, Sillence DO (2014) Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A 164A:1470–1481. https://doi.org/10.1002/ajmg.a.36545

    Article  PubMed  Google Scholar 

  8. Gauba V, Hartgerink JD (2008) Synthetic collagen heterotrimers: structural mimics of wild-type and mutant collagen type I. J Am Chem Soc 130:7509–7515. https://doi.org/10.1021/ja801670v

    Article  CAS  PubMed  Google Scholar 

  9. Hayden EC (2014) Technology: the $1,000 genome. Nature 507:294–295. https://doi.org/10.1038/507294a

    Article  CAS  PubMed  Google Scholar 

  10. Grada A, Weinbrecht K (2013) Next-generation sequencing: methodology and application. J Invest Dermatol 133:e11. https://doi.org/10.1038/jid.2013.248

    Article  CAS  PubMed  Google Scholar 

  11. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380. https://doi.org/10.1038/nature03959

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vincent AT, Derome N, Boyle B, Culley AI, Charette SJ (2017) Next-generation sequencing (NGS) in the microbiological world: how to make the most of your money. J Microbiol Methods 138:60–71. https://doi.org/10.1016/j.mimet.2016.02.016

    Article  CAS  PubMed  Google Scholar 

  13. Liu YP, Wu HY, Yang X, Xu HQ, Chen D, Huang Q, Fu WL (2014) Diagnostic accuracy of high resolution melting analysis for detection of KRAS mutations: a systematic review and meta-analysis. Sci Rep 4:7521. https://doi.org/10.1038/srep07521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen D, Wang YY, Chuai ZR, Huang JF, Wang YX, Liu K, Zhang LQ, Yang Z, Shi DC, Liu Q, Huang Q, Fu WL (2014) High-resolution melting analysis for accurate detection of BRAF mutations: a systematic review and meta-analysis. Sci Rep 4:4168. https://doi.org/10.1038/srep04168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reed GH, Wittwer CT (2004) Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin Chem 50:1748–1754. https://doi.org/10.1373/clinchem.2003.029751

    Article  CAS  PubMed  Google Scholar 

  16. Ney JT, Froehner S, Roesler A, Buettner R, Merkelbach-Bruse S (2012) High-resolution melting analysis as a sensitive prescreening diagnostic tool to detect KRAS, BRAF, PIK3CA, and AKT1 mutations in formalin-fixed, paraffin-embedded tissues. Arch Pathol Lab Med 136:983–992. https://doi.org/10.5858/arpa.2011-0176-OA

    Article  CAS  PubMed  Google Scholar 

  17. Kho SL, Chua KH, George E, Tan JA (2015) A novel gap-PCR with high resolution melting analysis for the detection of alpha-thalassaemia Southeast Asian and Filipino beta degrees -thalassaemia deletion. Sci Rep 5:13937. https://doi.org/10.1038/srep13937

    Article  PubMed  Google Scholar 

  18. Ouragini H, Haddad F, Darragi I, Abbes S (2014) Rapid and inexpensive detection of common HBB gene mutations in Tunisian population by high-resolution melting analysis: implication for molecular diagnosis. Hematology 19:80–84. https://doi.org/10.1179/1607845413Y.0000000096

    Article  CAS  PubMed  Google Scholar 

  19. Gentile FV, Zuntini M, Parra A, Battistelli L, Pandolfi M, Pals G, Sangiorgi L (2012) Validation of a quantitative PCR-high-resolution melting protocol for simultaneous screening of COL1A1 and COL1A2 point mutations and large rearrangements: application for diagnosis of osteogenesis imperfecta. Hum Mutat 33:1697–1707. https://doi.org/10.1002/humu.22146

    Article  CAS  PubMed  Google Scholar 

  20. Zhang ZL, Zhang H, Ke YH, Yue H, Xiao WJ, Yu JB, Gu JM, Hu WW, Wang C, He JW, Fu WZ (2012) The identification of novel mutations in COL1A1, COL1A2, and LEPRE1 genes in Chinese patients with osteogenesis imperfecta. J Bone Miner Metab 30:69–77. https://doi.org/10.1007/s00774-011-0284-6

    Article  CAS  PubMed  Google Scholar 

  21. Li L, Mao B, Li S, Xiao J, Wang H, Zhang J, Ren X, Wang Y, Wu Y, Cao Y, Lu C (2019) Genotypic and phenotypic characterization of Chinese patients with osteogenesis imperfecta. Hum Mutat 40:588–600. https://doi.org/10.1002/humu.23718

    Article  CAS  PubMed  Google Scholar 

  22. Basel D, Steiner RD (2009) Osteogenesis imperfecta: recent findings shed new light on this once well-understood condition. Genet Med 11:375–385. https://doi.org/10.1097/GIM.0b013e3181a1ff7b

    Article  CAS  PubMed  Google Scholar 

  23. Pollitt R, McMahon R, Nunn J, Bamford R, Afifi A, Bishop N, Dalton A (2006) Mutation analysis of COL1A1 and COL1A2 in patients diagnosed with osteogenesis imperfecta type I-IV. Hum Mutat 27:716. https://doi.org/10.1002/humu.9430

    Article  PubMed  Google Scholar 

  24. Marini JC, Forlino A, Cabral WA, Barnes AM, San Antonio JD, Milgrom S, Hyland JC, Körkkö J, Prockop DJ, De Paepe A, Coucke P (2007) Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Human mutation 28:209–221. https://doi.org/10.1002/humu.20429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee KS, Song HR, Cho TJ, Kim HJ, Lee TM, Jin HS, Park HY, Kang S, Jung SC, Koo SK (2006) Mutational spectrum of type I collagen genes in Korean patients with osteogenesis imperfecta. Hum Mutat 27:599. https://doi.org/10.1002/humu.9423

    Article  PubMed  Google Scholar 

  26. Stephen J, Shukla A, Dalal A, Girisha KM, Shah H, Gupta N, Kabra M, Dabadghao P, Hasegawa K, Tanaka H, Phadke SR (2014) Mutation spectrum of COL1A1 and COL1A2 genes in Indian patients with osteogenesis imperfecta. Am J Med Genet A 164A:1482–1489. https://doi.org/10.1002/ajmg.a.36481

    Article  CAS  PubMed  Google Scholar 

  27. Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5:16–18. https://doi.org/10.1038/nmeth1156

    Article  CAS  PubMed  Google Scholar 

  28. Voelkerding KV, Dames SA, Durtschi JD (2009) Next-generation sequencing: from basic research to diagnostics. Clin Chem 55:641–658. https://doi.org/10.1373/clinchem.2008.112789

    Article  CAS  PubMed  Google Scholar 

  29. Wang J, Ren X, Bai X, Zhang T, Wang Y, Li K, Li G (2015) Identification of gene mutation in patients with osteogenesis imperfect using high resolution melting analysis. Sci Rep 5:13468. https://doi.org/10.1038/srep13468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maioli M, Gnoli M, Boarini M, Tremosini M, Zambrano A, Pedrini E, Mordenti M, Corsini S, D’Eufemia P, Versacci P, Celli M, Sangiorgi L (2019) Genotype-phenotype correlation study in 364 osteogenesis imperfecta Italian patients. Eur J Hum Genet 10:100. https://doi.org/10.1038/s41431-019-0373-x

    Article  Google Scholar 

  31. Liew M, Pryor R, Palais R, Meadows C, Erali M, Lyon E, Wittwer C (2004) Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin Chem 50:1156–1164. https://doi.org/10.1373/clinchem.2004.032136

    Article  CAS  PubMed  Google Scholar 

  32. Lyondagger E, Millsondagger A, Phan T, Wittwer CT (1998) Detection and identification of base alterations within the region of factor V Leiden by Fluorescent melting curves. Mol Diagn 3:203–209. https://doi.org/10.154/MODI00300203

  33. Reed GH, Kent JO, Wittwer CT (2007) High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics 8:597–608. https://doi.org/10.2217/14622416.8.6.597

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Ren Xiuzhi and nurse Chen Mei for providing clinical diagnosis and control blood samples.

Funding

This study was supported by research grants from National Key R&D Program of China (2017YFC1001904); National Natural Science Foundation of China (21647008); Tianjin Science and Technology Support Program (16YFZCSY00900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Li.

Ethics declarations

Conflict of interest

None of the authors have conflicts of interest.

Ethics approval

Tianjin Hospital ethics committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 413 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, M., Bai, X., Zhang, T. et al. Mutation spectrum of COL1A1/COL1A2 screening by high-resolution melting analysis of Chinese patients with osteogenesis imperfecta. J Bone Miner Metab 38, 188–197 (2020). https://doi.org/10.1007/s00774-019-01039-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-019-01039-3

Keywords

Navigation