Skip to main content

Advertisement

Log in

The impact of LRP5 polymorphism (rs556442) on calcium homeostasis, bone mineral density, and body composition in Iranian children

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Failure to achieve optimal bone mass in childhood is the primary cause of decreased adult bone mineral density (BMD) and increased bone fragility in later life. Activating and inactivating LRP5 gene mutations has been associated with extreme bone-related phenotypes. Our aim was to investigate the role of LRP5 polymorphism on BMD, mineral biochemical parameters, and body composition in Iranian children. This cross-sectional study was performed on 9–18 years old children (125 boys, 137 girls). The serum level of calcium, phosphorous, alkaline phosphatase, and vitamin D parameters were checked. The body composition and BMD variables were measured by the Hologic system DXA. The rs566442 (V1119V) coding polymorphism in exon 15 of LRP5 was performed using PCR–RFLP method. Linear regression analysis, with adjustment for age, gender, body size parameters, and pubertal status was used to determine the association between LRP5 polymorphism (rs556442) and bone and body composition parameters. The allele frequency of the rs566442 gene was 35.5 % A and 63.9 % G. Our study revealed that LRP5 (rs556442) has not any significant influence on serum calcium, phosphorus, 25OHvitD, and serum alkaline phosphatase (P > 0.05). Total lean mass was greater in GG genotype (P = 0.028). Total body less head area (P = 0.044), spine BMD (P = 0.04), and total femoral BMC (P = 0.049) were lower in AG heterozygote genotype. This study show LRP5 polymorphism may associate with body composition and BMD in Iranian children. However, further investigations should be done to evaluate the role of other polymorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosen C (2000) Pathogenesis of osteoporosis. Ballieres Clin Endocrinol Metab 14:181–193

    CAS  Google Scholar 

  2. Bachrach LK, Hastie T, Wang MC, Narasimhan B, Marcus R (1999) Bone mineral acquisition in healthy Asian, Hispanic, black, and Caucasian youth: a longitudinal study. J Clin Endocrinol Metab 84:4702–4712

    CAS  PubMed  Google Scholar 

  3. Cui Y, Niziolek PJ, MacDonald BT, Zylstra CR, Alenina N et al (2011) Lrp5 functions in bone to regulate bone mass. Nat Med 17:684–691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Riancho JA, Olmos JM, Pineda B, García-Ibarbia C, Pérez-Núñez MI et al (2011) Wnt receptors, bone mass, and fractures: gene-wide association analysis of LRP5 and LRP6 polymorphisms with replication. Eur J Endocrinol 164:123–131

    Article  CAS  PubMed  Google Scholar 

  5. Yadav VK, Ryu JH, Suda N, Tanaka KF, Gingrich JA et al (2008) Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135:825–837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Koay MA, Woon PY, Zhang Y, Miles LJ, Duncan EL et al (2004) Influence of LRP5 polymorphisms on normal variation in BMD. J Bone Miner Res 19:1619–1627

    Article  CAS  PubMed  Google Scholar 

  7. Ferrari SL, Deutsch S, Choudhury U, Chevalley T, Bonjour JP, Dermitzakis ET, Rizzoli R, Antonarakis SE (2004) Polymorphisms in the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with variation in vertebral bone mass, vertebral bone size, and stature in whites. Am J Hum Genet 74:866–875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Koay MA, Tobias JH, Leary SD, Steer CD, Vilariño-Güell C et al (2007) The effect of LRP5 polymorphisms on bone mineral density is apparent in childhood. Calcif Tissue Int 81:1–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Utriainen P, Jääskeläinen J, Saarinen A, Vanninen E, Mäkitie O et al (2009) Body composition and bone mineral density in children with premature adrenarche and the association of LRP5 gene polymorphisms with bone mineral density. J Clin Endocrinol Metab 94:4144–4151

    Article  CAS  PubMed  Google Scholar 

  10. Van Wesenbeeck L, Cleiren E, Gram J, Beals RK, Bénichou O et al (2003) Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 72:763–771

    Article  PubMed Central  PubMed  Google Scholar 

  11. Korvala J, Jüppner H, Mäkitie O, Sochett E, Schnabel D et al (2012) Mutations in LRP5 cause primary osteoporosis without features of OI by reducing Wnt signaling activity. BMC Med Genet 10:26

    Article  Google Scholar 

  12. Jeddi M, Roosta MJ, Dabbaghmanesh MH, Omrani GR, Ayatollahi SM et al (2013) Normative data and percentile curves of bone mineral density in healthy Iranian children aged 9–18 years. Arch Osteoporos 8:114

    Article  PubMed  Google Scholar 

  13. Fretz JA, Zella LA, Kim S, Shevde NK, Pike JW (2007) 1,25-Dihydroxyvitamin D3 induces expression of the Wnt signaling co-regulator LRP5 via regulatory elements located significantly downstream of the gene’s transcriptional start site. J Steroid Biochem Mol Biol 103:440–445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Pike JW, Meyer MB, Watanuki M, Kim S, Zella LA et al (2007) Perspectives on mechanisms of gene regulation by 1,25-dihydroxyvitamin D3 and its receptor. J Steroid Biochem Mol Biol 103:389–395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kubota T, Michigami T, Ozono K (2009) Wnt signaling in bone metabolism. J Bone Miner Metab 27:265–271

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Sun CH, Yin H, Chen YF (2006) Association of polymorphism of low density lipoprotein receptor-related protein 5 Q89R, A1330V with bone mineral density in premenopausal northern Chinese women. Wei Sheng Yan Jiu 35:576–579

    PubMed  Google Scholar 

  17. Bennett CN, Ross SE, Longo KA, Bajnok L, Hemati N et al (2002) Regulation of Wnt signaling during adipogenesis. J Biol Chem 277:30998–31004

    Article  CAS  PubMed  Google Scholar 

  18. Ross SE, Hemati N, Longo KA, Bennett CN, Lucas P et al (2000) Inhibition of adipogenesis by Wnt signaling. Science 289:950–953

    Article  CAS  PubMed  Google Scholar 

  19. Prestwich TC, MacDougald OA (2007) Wnt/β-catenin signaling in adipogenesis and metabolism. Curr Opin Cell Biol 19:612–617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Taylor-Jones JM, McGehee RE, Rando TA, Lecka-Czernik B, Lipschitz DA et al (2002) Activation of an adipogenic program in adult myoblasts with age. Mech Ageing Dev 123:649–661

    Article  CAS  PubMed  Google Scholar 

  21. Williams BO, Insogna KL (2009) Where Wnts went: the exploding field of Lrp5 and Lrp6 signaling in bone. J Bone Miner Res 24:171–178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Tanner J (1986) Normal growth and techniques of growth assessment. Clin Endocrinol Metab 15:411–451

    Article  CAS  PubMed  Google Scholar 

  23. Jones G, Deqiong M, Cameron F (2006) Bone density interpretation and relevance in Caucasian children aged 9–17 years of age: insights from a population-based fracture study. J Clin Densitom 9:202–209

    Article  PubMed  Google Scholar 

  24. Binkovitz LA, Henwood MJ (2007) Pediatric DXA: technique and interpretation. Pediatr Radiol 37:21–31

    Article  PubMed Central  PubMed  Google Scholar 

  25. Mckay HA, Petit MA, Bailey DA, Wallace WM, Schutz RW (2000) Analysis of proximal femur DXA scans in growing children: comparisons of different protocols for cross-sectional 8-month and 7-year longitudinal data. J Bone Miner Res 15:1181–1188

    Article  CAS  PubMed  Google Scholar 

  26. Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7:137–145

    Article  CAS  PubMed  Google Scholar 

  27. Cole JH, Scerpella TA, van der Meulen MC (2005) Fan-beam densitometry of the growing skeleton. J Clin Densitom 8:57–64

    Article  PubMed  Google Scholar 

  28. Cole TJ, Green PJ (1992) Smoothing reference centile curves: the LMS method and penalized likelihood. Stat Med 11:1305–1319

    Article  CAS  PubMed  Google Scholar 

  29. Bollerslev J, Wilson SG, Dick IM, Islam FM, Ueland T et al (2005) LRP5 gene polymorphisms predict bone mass and incident fractures in elderly Australian women. Bone 36:599–606

    Article  CAS  PubMed  Google Scholar 

  30. Guo YF, Xiong DH, Shen H, Zhao LJ, Xiao P et al (2006) Polymorphisms of the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with obesity phenotypes in a large family-based association study. J Med Genet 43:798–803

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Balemans W, Van Hul W (2007) The genetics of low-density lipoprotein receptor-related protein 5 in bone: a story of extremes. Endocrinology 148:2622–2629

    Article  CAS  PubMed  Google Scholar 

  32. Kashef S, Saki F, Karamizadeh Z, Kashef MA (2006) Bone mineral density in children with systemic lupus erythematosus and juvenile rheumatoid arthritis. Ann Saudi Med 27:427–431

    Article  Google Scholar 

  33. Riddle RC, Diegel CR, Leslie JM, Van Koevering KK, Faugere MC, Clemens TL, Williams BO (2013) Lrp5 and Lrp6 exert overlapping functions in osteoblasts during postnatal bone acquisition. PLoS One 8:e63323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present manuscript was adapted from project No.33-2467 approved by the Shiraz University of Medical Sciences, Shiraz, Iran. The authors would like to thank Dr. Nasrin Shokrpour for editorial assistance and Mrs. Sareh Roosta for statistical analysis at the Center for Development of Clinical Research of Nemazee Hospital.

Conflict of interest

All authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Hossein Dabbaghmanesh or Marzieh Bakhshayeshkaram.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashouri, E., Meimandi, E.M., Saki, F. et al. The impact of LRP5 polymorphism (rs556442) on calcium homeostasis, bone mineral density, and body composition in Iranian children. J Bone Miner Metab 33, 651–657 (2015). https://doi.org/10.1007/s00774-014-0624-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-014-0624-4

Keywords

Navigation