Skip to main content

Advertisement

Log in

Bruton tyrosine kinase (Btk) suppresses osteoblastic differentiation

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The Tec family of nonreceptor tyrosine kinases has been shown to play a key role in inflammation and bone destruction. Bruton tyrosine kinase (Btk) has been the most widely studied because of its critical role in B cells. Furthermore, recent evidence has demonstrated that blocking Btk signaling is effective in ameliorating lymphoma progression and experimental arthritis. The role of Btk in osteoblastic differentiation has not been well elucidated. In this study, we demonstrated the role of Btk in osteoblastic differentiation and investigated the effects of a Btk inhibitor on osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells, primary calvarial osteoblasts, and bone marrow stromal ST2 cells. Btk expression was detected in all three cell lines. Btk inhibition stimulated mRNA expression of osteoblastic markers (alkaline phosphatase, osteocalcin, and osterix) and promoted mineralization of the extracellular matrix. In addition, Btk knockdown caused increased mRNA expression of osteoblastic markers. Furthermore, Btk inhibition suppressed the phosphorylation of mitogen-activated protein kinase (MAPK), nuclear factor kappa B (NFκB), and protein kinase Cα (PKCα). Our results indicate that Btk may regulate osteoblastic differentiation through the MAPK, NFκB, and PKCα signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. de Weers M, Mensink RG, Kraakman ME, Schuurman RK, Hendriks RW (1994) Mutation analysis of the Bruton’s tyrosine kinase gene in X-linked agammaglobulinemia: identification of a mutation which affects the same codon as is altered in immunodeficient xid mice. Hum Mol Genet 3:161–166

    Article  PubMed  Google Scholar 

  2. Qiu Y, Kung HJ (2000) Signaling network of the Btk family kinases. Oncogene 19:5651–5661

    Article  CAS  PubMed  Google Scholar 

  3. Di Paolo JA, Huang T, Balazs M, Barbosa J, Barck KH et al (2011) Specific Btk inhibition suppresses B cell- and myeloid cell-mediated arthritis. Nat Chem Biol 7:41–50

    Article  PubMed  Google Scholar 

  4. Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B, Li S, Pan Z, Thamm DH, Miller RA, Buggy JJ (2010) The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci USA 107:13075–13080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Hendriks RW (2011) Drug discovery: new Btk inhibitor holds promise. Nat Chem Biol 7:4–5

    Article  CAS  PubMed  Google Scholar 

  6. Liu L, Di Paolo J, Barbosa J, Rong H, Reif K, Wong H (2011) Antiarthritis effect of a novel Bruton’s tyrosine kinase (BTK) inhibitor in rat collagen-induced arthritis and mechanism-based pharmacokinetic/pharmacodynamic modeling: relationships between inhibition of BTK phosphorylation and efficacy. J Pharmacol Exp Ther 338:154–163

    Article  CAS  PubMed  Google Scholar 

  7. Chang BY, Huang MM, Francesco M, Chen J, Sokolove J, Magadala P, Robinson WH, Buggy JJ (2011) The Bruton tyrosine kinase inhibitor PCI-32765 ameliorates autoimmune arthritis by inhibition of multiple effector cells. Arthritis Res Ther 13:R115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Weniger MA, Wiestner A (2011) Molecular targeted approaches in mantle cell lymphoma. Semin Hematol 48:214–226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Herman SE, Gordon AL, Hertlein E, Ramanunni A, Zhang X, Jaglowski S, Flynn J, Jones J, Blum KA, Buggy JJ, Hamdy A, Johnson AJ, Byrd JC (2011) Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood 117:6287–6296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Davis RE, Ngo VN, Lenz G, Tolar P, Young RM et al (2010) Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 463:88–92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Shinohara M, Koga T, Okamoto K, Sakaguchi S, Arai K, Yasuda H, Takai T, Kodama T, Morio T, Geha RS, Kitamura D, Kurosaki T, Ellmeier W, Takayanagi H (2008) Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals. Cell 132:794–806

    Article  CAS  PubMed  Google Scholar 

  12. Lee SH, Kim T, Jeong D, Kim N, Choi Y (2008) The tec family tyrosine kinase Btk regulates RANKL-induced osteoclast maturation. J Biol Chem 283:11526–11534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Yoshida K, Higuchi C, Nakura A, Yoshikawa H (2011) Spleen tyrosine kinase suppresses osteoblastic differentiation through MAPK and PKCalpha. Biochem Biophys Res Commun 411:774–779

    Article  CAS  PubMed  Google Scholar 

  14. Kaneshiro S, Ebina K, Shi K, Higuchi C, Hirao M, Okamoto M, Koizumi K, Morimoto T, Yoshikawa H,Hashimoto J (2013) IL-6 negatively regulates osteoblast differentiation through the SHP2/MEK2 and SHP2/Akt2 pathways in vitro. J Bone Miner Metab 1–15 (in press)

  15. Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, Sparkes RS, Kubagawa H, Mohandas T, Quan S et al (1993) Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 72:279–290

    Article  CAS  PubMed  Google Scholar 

  16. Vetrie D, Vorechovsky I, Sideras P, Holland J, Davies A, Flinter F, Hammarstrom L, Kinnon C, Levinsky R, Bobrow M et al (1993) The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 361:226–233

    Article  CAS  PubMed  Google Scholar 

  17. Robak T, Robak E (2012) Tyrosine kinase inhibitors as potential drugs for B-cell lymphoid malignancies and autoimmune disorders. Expert Opin Investig Drugs 21:921–947

    Article  CAS  PubMed  Google Scholar 

  18. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29

    Article  CAS  PubMed  Google Scholar 

  19. Lee MH, Kwon TG, Park HS, Wozney JM, Ryoo HM (2003) BMP-2-induced Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochem Biophys Res Commun 309:689–694

    Article  CAS  PubMed  Google Scholar 

  20. Matsubara T, Kida K, Yamaguchi A, Hata K, Ichida F, Meguro H, Aburatani H, Nishimura R, Yoneda T (2008) BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. J Biol Chem 283:29119–29125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Tan SL, Liao C, Lucas MC, Stevenson C, Demartino JA (2013) Targeting the SYK-BTK axis for the treatment of immunological and hematological disorders: recent progress and therapeutic perspectives. Pharmacol Ther 138:294–309

    Article  CAS  PubMed  Google Scholar 

  22. Gallea S, Lallemand F, Atfi A, Rawadi G, Ramez V, Spinella-Jaegle S, Kawai S, Faucheu C, Huet L, Baron R, Roman-Roman S (2001) Activation of mitogen-activated protein kinase cascades is involved in regulation of bone morphogenetic protein-2-induced osteoblast differentiation in pluripotent C2C12 cells. Bone 28:491–498

    Article  CAS  PubMed  Google Scholar 

  23. Higuchi C, Myoui A, Hashimoto N, Kuriyama K, Yoshioka K, Yoshikawa H, Itoh K (2002) Continuous inhibition of MAPK signaling promotes the early osteoblastic differentiation and mineralization of the extracellular matrix. J Bone Miner Res 17:1785–1794

    Article  CAS  PubMed  Google Scholar 

  24. Suzuki A, Guicheux J, Palmer G, Miura Y, Oiso Y, Bonjour JP, Caverzasio J (2002) Evidence for a role of p38 MAP kinase in expression of alkaline phosphatase during osteoblastic cell differentiation. Bone 30:91–98

    Article  CAS  PubMed  Google Scholar 

  25. Nakura A, Higuchi C, Yoshida K, Yoshikawa H (2011) PKCalpha suppresses osteoblastic differentiation. Bone 48:476–484

    Article  CAS  PubMed  Google Scholar 

  26. Chang J, Wang Z, Tang E, Fan Z, McCauley L, Franceschi R, Guan K, Krebsbach PH, Wang CY (2009) Inhibition of osteoblastic bone formation by nuclear factor-kappaB. Nat Med 15:682–689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Alles N, Soysa NS, Hayashi J, Khan M, Shimoda A, Shimokawa H, Ritzeler O, Akiyoshi K, Aoki K, Ohya K (2010) Suppression of NF-kappaB increases bone formation and ameliorates osteopenia in ovariectomized mice. Endocrinology 151:4626–4634

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

All authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chikahisa Higuchi.

Electronic supplementary material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaneshiro, S., Ebina, K., Shi, K. et al. Bruton tyrosine kinase (Btk) suppresses osteoblastic differentiation. J Bone Miner Metab 33, 486–495 (2015). https://doi.org/10.1007/s00774-014-0612-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-014-0612-8

Keywords

Navigation