Skip to main content

Advertisement

Log in

Chronological histological changes during bone regeneration on a non-crosslinked atelocollagen matrix

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Cleavage of the antigenic telopeptide region from type I collagen yields atelocollagen, and this is widely used as a scaffold for bone regeneration combined with cells, growth factors, etc. However, neither the biological effect of atelocollagen alone or its contribution to bone regeneration has been well studied. We evaluated the chronological histological changes during bone regeneration following implantation of non-crosslinked atelocollagen (Koken Co., Ltd.) in rat calvarial defects. One week after implantation, osteogenic cells positive for runt-related transcription factor 2 (Runx2) and osteoclasts positive for tartrate-resistant acid phosphatase (TRAP) were present in the atelocollagen implant in the absence of bone formation. The number of Runx2-positive osteogenic cells and Osterix-positive osteoblasts increased 2 weeks after implantation, and bone matrix proteins (osteopontin, OPN; osteocalcin, OC; dentin matrix protein 1, DMP1) were distributed in newly formed bone in a way comparable to normal bone. Some resorption cavities containing osteoclasts were also present. By 3 weeks after implantation, most of the implanted atelocollagen was replaced by new bone containing many resorption cavities, and OPN, OC, and DMP1 were deposited in the residual collagenous matrix. After 4 weeks, nearly all of the atelocollagen implant was replaced with new bone including hematopoietic marrow. Immunohistochemistry for the telopeptide region of type I collagen (TeloCOL1) during these processes demonstrated that the TeloCOL1-negative atelocollagen implant was replaced by TeloCOL1-positive collagenous matrix and new bone, indicating that new bone was mostly composed of endogenous type I collagen. These findings suggest that the atelocollagen itself can support bone regeneration by promoting osteoblast differentiation and type I collagen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rossert J, Crombrugghe B (2002) Type I collagen: structure, synthesis, and regulation. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic Press, San Diego, pp 189–210

    Chapter  Google Scholar 

  2. Wiesmann HP, Meyer U, Plate U, Höhling HJ (2005) Aspects of collagen mineralization in hard tissue formation. Int Rev Cytol 242:121–156

    Article  PubMed  CAS  Google Scholar 

  3. Weiner S, Traub W (1986) Organization of hydroxyapatite crystals within collagen fibrils. FEBS Lett 206:262–266

    Article  PubMed  CAS  Google Scholar 

  4. Traub W, Arad T, Weiner S (1992) Growth of mineral crystals in turkey tendon collagen fibers. Connect Tissue Res 28:99–111

    Article  PubMed  CAS  Google Scholar 

  5. Veis A (1993) Mineral-matrix interactions in bone and dentin. J Bone Miner Res 8:S493–S497

    Article  PubMed  Google Scholar 

  6. Robey PG (1996) Vertebrate mineralized matrix proteins. Structure and function. Connect Tissue Res 35:131–136

    Article  PubMed  CAS  Google Scholar 

  7. Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4:743–765

    Article  PubMed  CAS  Google Scholar 

  8. Glowacki J, Mizuno S (2008) Collagen scaffolds for tissue engineering. Biopolymers 89:338–344

    Article  PubMed  CAS  Google Scholar 

  9. Robins SP, Brady JD (2002) Collagen cross-linking and metabolism. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology, 2nd edn. Academic Press, San Diego, pp 211–223

    Chapter  Google Scholar 

  10. Rodriguez AP, Missana L, Nagatsuka H, Gunduz M, Tsujigiwa H, Rivera R, Nagai N (2006) Efficacy of atelocollagen honeycomb scaffold in bone formation using KUSA/A1 cells. J Biomed Mater Res A 77:707–717

    PubMed  Google Scholar 

  11. Bitar M, Salih V, Brown RA, Nazhat SN (2007) Effect of multiple unconfined compression on cellular dense collagen scaffolds for bone tissue engineering. J Mater Sci Mater Med 18:237–244

    Article  PubMed  CAS  Google Scholar 

  12. Jäger M, Jelinek EM, Wess KM, Scharfstädt A, Jacobson M, Kevy SV, Krauspe R (2009) Bone marrow concentrate: a novel strategy for bone defect treatment. Curr Stem Cell Res Ther 4:34–43

    Article  PubMed  Google Scholar 

  13. Fujimura K, Bessho K, Kusumoto K, Ogawa Y, Iizuka T (1995) Experimental studies on bone inducing activity of composites of atelopeptide type I collagen as a carrier for ectopic osteoinduction by rhBMP-2. Biochem Biophys Res Commun 208:316–322

    Article  PubMed  CAS  Google Scholar 

  14. Qian Y, Yao G, Lin Z, Chen J, Fan Y, Davey T, Xu J, Zheng M (2009) Natural bone collagen scaffold combined with OP-1 for bone formation induction in vivo. J Biomed Mater Res B Appl Biomater 90:778–788

    PubMed  Google Scholar 

  15. Wahl DA, Czernuszka JT (2006) Collagen–hydroxyapatite composites for hard tissue repair. Eur Cell Mater 11:43–56

    PubMed  CAS  Google Scholar 

  16. Takeuchi Y, Nakayama K, Matsumoto T (1996) Differentiation and cell surface expression of transforming growth factor-beta receptors are regulated by interaction with matrix collagen in murine osteoblastic cells. J Biol Chem 271:3938–3944

    Article  PubMed  CAS  Google Scholar 

  17. Takeuchi Y, Suzawa M, Kikuchi T, Nishida E, Fujita T, Matsumoto T (1997) Differentiation and transforming growth factor-beta receptor down-regulation by collagen-alpha2beta1 integrin interaction is mediated by focal adhesion kinase and its downstream signals in murine osteoblastic cells. J Biol Chem 272:29309–29316

    Article  PubMed  CAS  Google Scholar 

  18. Xiao G, Wang D, Benson MD, Karsenty G, Franceschi RT (2008) Role of the alpha2-integrin in osteoblast-specific gene expression and activation of the Osf2 transcription factor. J Biol Chem 273:32988–32994

    Article  Google Scholar 

  19. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764

    Article  PubMed  CAS  Google Scholar 

  20. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29

    Article  PubMed  CAS  Google Scholar 

  21. Hirata A, Sugahara T, Nakamura H (2009) Localization of runx2, osterix, and osteopontin in tooth root formation in rat molars. J Histochem Cytochem 57:397–403

    Article  PubMed  CAS  Google Scholar 

  22. Toyosawa S, Shintani S, Fujiwara T, Ooshima T, Sato A, Ijuhin N, Komori T (2001) Dentin matrix protein 1 is predominantly expressed in chicken and rat osteocytes but not in osteoblasts. J Bone Miner Res 16:2017–2026

    Article  PubMed  CAS  Google Scholar 

  23. Toyosawa S, Tomita Y, Kishino M, Hashimoto J, Ueda T, Tsujimura T, Aozasa K, Ijuhin N, Komori T (2004) Expression of dentin matrix protein 1 in tumors causing oncogenic osteomalacia. Mod Pathol 17:573–578

    Article  PubMed  CAS  Google Scholar 

  24. Allori AC, Sailon AM, Warren SM (2008) Biological basis of bone formation, remodeling, and repair-part I: biochemical signaling molecules. Tissue Eng Part B Rev 14:259–273

    Article  PubMed  CAS  Google Scholar 

  25. Saxena AK (2010) Tissue engineering and regenerative medicine research perspectives for pediatric surgery. Pediatr Surg Int 26:557–573

    Article  PubMed  Google Scholar 

  26. Greenwald JA, Mehrara BJ, Spector JA, Warren SM, Crisera FE, Fagenholz PJ, Bouletreau PJ, Longaker MT (2000) Regional differentiation of cranial suture-associated dura mater in vivo and in vitro: implications for suture fusion and patency. J Bone Miner Res 15:2413–2430

    Article  PubMed  CAS  Google Scholar 

  27. Spector JA, Greenwald JA, Warren SM, Bouletreau PJ, Detch RC, Fagenholz PJ, Crisera FE, Longaker MT (2002) Dura mater biology: autocrine and paracrine effects of fibroblast growth factor 2. Plast Reconstr Surg 109:645–654

    Article  PubMed  Google Scholar 

  28. DeLustro F, Condell RA, Nguyen MA, McPherson JM (1986) A comparative study of the biologic and immunologic response to medical devices derived from dermal collagen. J Biomed Mater Res 20:109–120

    Article  PubMed  CAS  Google Scholar 

  29. Turecek C, Fratzl-Zelman N, Rumpler M, Buchinger B, Spitzer S, Zoehrer R, Durchschlag E, Klaushofer K, Paschalis EP, Varga F (2008) Collagen cross-linking influences osteoblastic differentiation. Calcif Tissue Int 82:392–400

    Article  PubMed  CAS  Google Scholar 

  30. RecName: Full=Collagen alpha-1(I) chain; AltName: Full=Alpha-1 typeI collagen; Flags: Precursor. http://www.ncbi.nlm.nih.gov/protein/P02453.3

  31. Brandi ML, Collin-Osdoby P (2006) Vascular biology and the skeleton. J Bone Miner Res 21:183–192

    Article  PubMed  CAS  Google Scholar 

  32. Kaigler D, Krebsbach PH, Wang Z, West ER, Horger K, Mooney DJ (2006) Transplanted endothelial cells enhance orthotopic bone regeneration. J Dent Res 85:633–637

    Article  PubMed  CAS  Google Scholar 

  33. Kaigler D, Wang Z, Horger K, Mooney DJ, Krebsbach PH (2006) VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J Bone Miner Res 21:735–744

    Article  PubMed  CAS  Google Scholar 

  34. Jackson CJ, Jenkins KL (1991) Type I collagen fibrils promote rapid vascular tube formation upon contact with the apical side of cultured endothelium. Exp Cell Res 192:319–323

    Article  PubMed  CAS  Google Scholar 

  35. Sweeney SM, DiLullo G, Slater SJ, Martinez J, Iozzo RV, Lauer-Fields JL, Fields GB, San Antonio JD (2003) Angiogenesis in collagen I requires alpha2beta1 ligation of a GFP*GER sequence and possibly p38 MAPK activation and focal adhesion disassembly. J Biol Chem 278:30516–30524

    Article  PubMed  CAS  Google Scholar 

  36. Schmeisser A, Garlichs CD, Zhang H, Eskafi S, Graffy C, Ludwig J, Strasser RH, Daniel WG (2001) Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc Res 49:671–680

    Article  PubMed  CAS  Google Scholar 

  37. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20:345–357

    Article  PubMed  CAS  Google Scholar 

  38. Helfrich MH, Nesbitt SA, Lakkakorpi PT, Barnes MJ, Bodary SC, Shankar G, Mason WT, Mendrick DL, Väänänen HK, Horton MA (1996) Beta 1 integrins and osteoclast function: involvement in collagen recognition and bone resorption. Bone 19:317–328

    Article  PubMed  CAS  Google Scholar 

  39. Faccio R, Grano M, Colucci S, Zallone AZ, Quaranta V, Pelletier AJ (1998) Activation of alphav beta3 integrin on human osteoclast-like cells stimulates adhesion and migration in response to osteopontin. Biochem Biophys Res Commun 249:522–525

    Article  PubMed  CAS  Google Scholar 

  40. Uchida M, Shima M, Chikazu D, Fujieda A, Obara K, Suzuki H, Nagai Y, Yamato H, Kawaguchi H (2001) Transcriptional induction of matrix metalloproteinase-13 (collagenase-3) by 1alpha,25-dihydroxyvitamin D3 in mouse osteoblastic MC3T3-E1 cells. J Bone Miner Res 16:221–230

    Article  PubMed  CAS  Google Scholar 

  41. Inoue K, Mikuni-Takagaki Y, Oikawa K, Itoh T, Inada M, Noguchi T, Park JS, Onodera T, Krane SM, Noda M, Itohara S (2006) A crucial role for matrix metalloproteinase 2 in osteocytic canalicular formation and bone metabolism. J Biol Chem 281:33814–33824

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. I Fujimoto (Koken Co., Ltd. Research Institute) for critical discussion and technical assistance for type I collagen. This work was supported by Grant-in-Aid for Scientific Research from MEXT/JSPS (KAKENHI Grant Number 21390491 and 24390409 to S.T. and 24792075 to R.K.).

Conflict of interest

All authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Toyosawa.

About this article

Cite this article

Kagawa, R., Kishino, M., Sato, S. et al. Chronological histological changes during bone regeneration on a non-crosslinked atelocollagen matrix. J Bone Miner Metab 30, 638–650 (2012). https://doi.org/10.1007/s00774-012-0376-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-012-0376-y

Keywords

Navigation