Skip to main content

Advertisement

Log in

Methodological approach for the detection of both microdamage and fluorochrome labels in ewe bone and human trabecular bone

  • Short Communication
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The purpose of this study was to adapt various staining methods for the detection of microdamage in human bone, while preserving tetracycline labels. We describe two staining methods using calcein green and xylenol orange, first developed in ewe bone samples and validated in human trabecular bone samples. In ewe bones, we found that calcein green at 0.5 mM concentration diluted in 100% ethanol as well as xylenol orange at 5 mM were the most adequate fluorochromes both to detect microdamage and preserve the double tetracycline labeling. These results were verified in human trabecular bone (iliac crest for the tetracycline label, and vertebral bone for the double labeling). Results obtained in human bone samples were identical to those in ewes, so this combination of fluorochromes is now used in our laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. B660-30 JT Baker, Phillipsburg, NJ, USA.

  2. F 6377 Sigma Chemical Co., St Louis, MO, USA.

  3. M1255 Sigma.

  4. A3882 Sigma.

  5. C 0875 Sigma.

  6. 398187 Sigma.

  7. Filter set #20: Excitation BP 546/12, Beam Splitter FT 560, Emission BP 575–640.

  8. Filter set #09: Excitation BP 450–490, Beam Splitter FT 510, Emission LP 515.

  9. Filter set #18: Excitation BP 390–420, Beam Splitter FT 425, Emission LP 450.

References

  1. Fazzalari NL, Forwood MR, Smith K, Manthey BA, Herreen P (1998) Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage. Bone 22:381–388

    Article  PubMed  CAS  Google Scholar 

  2. Norman TL, Wang Z (1997) Microdamage of human cortical bone: incidence and morphology in long bones. Bone 20:375–379

    Article  PubMed  CAS  Google Scholar 

  3. Schaffler MB, Choi K, Milgrom C (1995) Aging and matrix microdamage accumulation in human compact bone. Bone 17:521–525

    Article  PubMed  CAS  Google Scholar 

  4. Vashishth D (2007) Hierarchy of bone microdamage at multiple length scales. Int J Fatigue 29:1024–1033

    Article  PubMed  CAS  Google Scholar 

  5. Wenzel TE, Schaffler MB, Fyhrie DP (1996) In vivo trabecular microcracks in human vertebral bone. Bone 19:89–95

    Article  PubMed  CAS  Google Scholar 

  6. Burr DB, Stafford T (1990) Validity of the bulk-staining technique to separate artifactual from in vivo bone microdamage. Clin Orthop 260:305–308

    PubMed  Google Scholar 

  7. Martin RB, Yeh OC, Fyhrie DP (2007) On sampling bones for microcracks. Bone 40:1159–1165

    Article  PubMed  CAS  Google Scholar 

  8. Diab T, Vashishth D (2007) Morphology, localization and accumulation of in vivo microdamage in human cortical bone. Bone 40:612–618

    Article  PubMed  Google Scholar 

  9. Vashishth D, Koontz J, Qiu SJ, Lundin-Cannon D, Yeni YN, Schaffler MB, Fyhrie DP (2000) In vivo diffuse damage in human vertebral trabecular bone. Bone 26:147–152

    Article  PubMed  CAS  Google Scholar 

  10. Fazzalari NL, Forwood MR, Manthey BA, Smith K, Kolesik P (1998) Three-dimensional confocal images of microdamage in cancellous bone. Bone 23:373–378

    Article  PubMed  CAS  Google Scholar 

  11. Burr D (2003) Microdamage and bone strength. Osteoporos Int 14:67–72

    Article  Google Scholar 

  12. Burr DB, Turner CH, Naick P, Forwood MR, Ambrosius W, Hasan MS, Pidaparti R (1998) Does microdamage accumulation affect the mechanical properties of bone? J Biomech 31:337–345

    Article  PubMed  CAS  Google Scholar 

  13. Diab T, Vashishth D (2005) Effects of damage morphology on cortical bone fragility. Bone 37:96–102

    Article  PubMed  CAS  Google Scholar 

  14. Akkus O, Knott DF, Jepsen KJ, Davy DT, Rimnac CM (2003) Relationship between damage accumulation and mechanical property degradation in cortical bone: microcrack orientation is important. J Biomed Mater Res A 65:482–488

    Article  PubMed  Google Scholar 

  15. Diab T, Condon KW, Burr DB, Vashishth D (2006) Age-related change in the damage morphology of human cortical bone and its role in bone fragility. Bone 38:427–431

    Article  PubMed  Google Scholar 

  16. Lee TC, Mohsin S, Taylor D, Parkesh R, Gunnlaugsson T, O’Brien FJ, Giehl M, Gowin W (2003) Detecting microdamage in bone. J Anat 203:161–172

    Article  PubMed  CAS  Google Scholar 

  17. Lee TC, Myers ER, Hayes WC (1998) Fluorescence-aided detection of microdamage in compact bone. J Anat 193:179–184

    Article  PubMed  Google Scholar 

  18. O’Brien FJ, Brennan O, Kennedy OD, Lee TC (2005) Microcracks in cortical bone: how do they affect bone biology? Curr Osteoporos Rep 3:39–45

    Article  PubMed  Google Scholar 

  19. O’Brien FJ, Taylor D, Dickson GR, Lee TC (2000) Visualisation of three-dimensional microcracks in compact bone. J Anat 197:413–420

    Article  PubMed  Google Scholar 

  20. Schaffler MB, Pitchford WC, Choi K, Riddle JM (1994) Examination of compact bone microdamage using back-scattered electron microscopy. Bone 15:483–488

    Article  PubMed  CAS  Google Scholar 

  21. O’Brien FJ, Hardiman DA, Hazenberg JG, Mercy MV, Mohsin S, Taylor D, Lee TC (2005) The behaviour of microcracks in compact bone. Eur J Morphol 42:71–79

    Article  PubMed  Google Scholar 

  22. Mohsin S, O’Brien FJ, Lee TC (2006) Microcracks in compact bone: a three-dimensional view. J Anat 209:119–124

    Article  PubMed  CAS  Google Scholar 

  23. McDonnell P, McHugh PE, O’Mahoney D (2007) Vertebral osteoporosis and trabecular bone quality. Ann Biomed Eng 35:170–189

    Article  PubMed  CAS  Google Scholar 

  24. Moore TL, Gibson LJ (2002) Microdamage accumulation in bovine trabecular bone in uniaxial compression. J Biomech Eng 124:63–71

    Article  Google Scholar 

  25. Mori S, Harruff R, Ambrosius W, Burr DB (1997) Trabecular bone volume and microdamage accumulation in the femoral heads of women with and without femoral neck fractures. Bone 21:521–526

    Article  PubMed  CAS  Google Scholar 

  26. Shi X, Liu XS, Wang X, Guo XE, Niebur GL (2010) Effects of trabecular type and orientation on microdamage susceptibility in trabecular bone. Bone 46:1260–1266

    Article  PubMed  Google Scholar 

  27. Wang X, Masse DB, Leng H, Hess KP, Ross RD, Roeder RK, Niebur GL (2007) Detection of trabecular bone microdamage by micro-computed tomography. J Biomech 40:3397–3403

    Article  PubMed  Google Scholar 

  28. Yeni YN, Hou FJ, Ciarelli T, Vashishth D, Fyhrie DP (2003) Trabecular shear stresses predict in vivo linear microcrack density but not diffuse damage in human vertebral cancellous bone. Ann Biomed Eng 31:726–732

    Article  PubMed  Google Scholar 

  29. Burr DB, Hooser M (1995) Alterations to the en bloc basic fuchsin staining protocol for the demonstration of microdamage produced in vivo. Bone 17:431–433

    Article  PubMed  CAS  Google Scholar 

  30. Wasserman N, Brydges B, Searles S, Akkus O (2008) In vivo linear microcracks of human femoral cortical bone remain parallel to osteons during aging. Bone 43:856–861

    Article  PubMed  Google Scholar 

  31. Lee TC, Arthur TL, Gibson LJ, Hayes WC (2000) Sequential labelling of microdamage in bone using chelating agents. J Orthop Res 18:322–325

    Article  PubMed  CAS  Google Scholar 

  32. Zarrinkalam KH, Kuliwaba JS, Martin RB, Wallwork MA, Fazzalari NL (2005) New insights into the propagation of fatigue damage in cortical bone using confocal microscopy and chelating fluorochromes. Eur J Morphol 42:81–90

    Article  PubMed  CAS  Google Scholar 

  33. Chavassieux P, Buffet A, Vergnaud P, Garnero P, Meunier PJ (1997) Short-term effects of corticosteroids on trabecular bone remodeling in old ewes. Bone 20:451–455

    Article  PubMed  CAS  Google Scholar 

  34. Dickson GR (1984) Methods of calcified tissue preparation. Elsevier, Amsterdam

    Google Scholar 

  35. Frost HM (1960) Presence of microscopic cracks in vivo in bone. Henry Ford Hosp Med Bull 8:27–35

    Google Scholar 

  36. Chapurlat RD, Arlot M, Burt-Pichat B, Chavassieux P, Roux JP, Portero-Muzy N, Delmas PD (2007) Microcrack frequency and bone remodeling in postmenopausal osteoporotic women on long-term bisphosphonates: a bone biopsy study. J Bone Miner Res 22:1502–1509

    Article  PubMed  CAS  Google Scholar 

  37. Follet H, Viguet-Carrin S, Burt-Pichat B, Depalle B, Bala Y, Gineyts E, Munoz F, Arlot M, Boivin G, Chapurlat RD, Delmas PD, Bouxsein ML (2010) Effects of preexisting microdamage, collagen cross-links, degree of mineralization, age, and architecture on compressive mechanical properties of elderly human vertebral trabecular bone. J Orthop Res. doi:10.1002/jor.21275

  38. Arlot ME, Burt-Pichat B, Roux JP, Vashishth D, Bouxsein ML, Delmas PD (2008) Microarchitecture influences microdamage accumulation in human vertebral trabecular bone. J Bone Miner Res 23:1613–1618

    Article  PubMed  Google Scholar 

  39. Sun TC, Mori S, Roper J, Brown C, Hooser T, Burr DB (1992) Do different fluorochrome labels give equivalent histomorphometric information. Bone 13:443–446

    Article  PubMed  CAS  Google Scholar 

  40. O’Brien FJ, Taylor D, Lee TC (2002) An improved labelling technique for monitoring microcrack growth in compact bone. J Biomech 35:523–526

    Article  PubMed  Google Scholar 

  41. Stepan JJ, Burr DB, Pavo I, Sipos A, Michalska D, Li J, Fahrleitner-Pammer A, Petto H, Westmore M, Michalsky D, Sato M, Dobnig H (2007) Low bone mineral density is associated with bone microdamage accumulation in postmenopausal women with osteoporosis. Bone 41:378–385

    Article  PubMed  Google Scholar 

  42. Bala Y, Farlay D, Delmas PD, Meunier PJ, Boivin G (2010) Time sequence of secondary mineralization and microhardness in cortical and cancellous bone from ewes. Bone 46:1204–1212

    Article  PubMed  Google Scholar 

  43. Farlay D, Panczer G, Rey C, Delmas PD, Boivin G (2010) Mineral maturity and crystallinity index are distinct characteristics of bone mineral. J Bone Miner Metab 28:433–445

    Article  PubMed  Google Scholar 

  44. Bala Y, Boivin G, Simi C, Ste-Marie LG, Delmas PD, Meunier PJ (2006) The microhardness of bone is only partly explained by its degree of mineralization in control and osteoporotic subjects. J Bone Miner Res 21:S332 (abstract M019)

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Dr Anna Bencsik, from histology dept of Anses Lyon laboratory for her assistance in the preparation of the manuscript, and Jean-Paul Roux, from INSERM UMR 1033 for his technical assistance.

Conflict of interest

All the authors state that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Follet.

About this article

Cite this article

Burt-Pichat, B., Follet, H., Toulemonde, G. et al. Methodological approach for the detection of both microdamage and fluorochrome labels in ewe bone and human trabecular bone. J Bone Miner Metab 29, 756–764 (2011). https://doi.org/10.1007/s00774-011-0291-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-011-0291-7

Keywords

Navigation