Skip to main content

Advertisement

Log in

Regulation of ER molecular chaperone prevents bone loss in a murine model for osteoporosis

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Endoplasmic reticulum (ER) stress response is important for protein maturation in the ER. Some murine models for bone diseases have provided significant insight into the possibility that pathogenesis of osteoporosis is related to ER stress response of osteoblasts. We examined a possible correlation between osteoporosis and ER stress response. Bone specimens from 8 osteoporosis patients and 8 disease-controls were used for immunohistochemical analysis. We found that ER molecular chaperones, such as BiP (immunoglobulin heavy-chain binding protein) and PDI (protein-disulfide isomerase) are down-regulated in osteoblasts from osteoporosis patients. Based on this result, we hypothesized that up-regulation of ER molecular chaperones in osteoblasts could restore decreased bone formation in osteoporosis. Therefore, we investigated whether treatment of murine model for osteoporosis with BIX (BiP inducer X), selective inducer BiP, could prevent bone loss. We found that oral administration of BIX effectively improves decline in bone formation through the activation of folding and secretion of bone matrix proteins. Considering these results together, BIX may be a potential therapeutic agent for the prevention of bone loss in osteoporosis patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Harding HP, Calfon M, Urano F, Novoa I, Ron D (2002) Transcriptional and translational control in the mammalian unfolded protein response. Annu Rev Cell Dev Biol 18:575–599

    Article  CAS  PubMed  Google Scholar 

  2. Patil C, Walter P (2001) Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol 13:349–355

    Article  CAS  PubMed  Google Scholar 

  3. Schröder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res 569:29–63

    PubMed  Google Scholar 

  4. Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H, Sabatini DD, Ron D (2001) Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol Cell 7:1153–1163

    Article  CAS  PubMed  Google Scholar 

  5. Zhao L, Longo-Guess C, Harris BS, Lee JW, Ackerman SL (2005) Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nat Genet 37:974–979

    Article  CAS  PubMed  Google Scholar 

  6. Kanis JA, Melton LJIII, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141

    Article  CAS  PubMed  Google Scholar 

  7. Ralston SH, de Crombrugghe B (2006) Genetic regulation of bone mass and susceptibility to osteoporosis. Genes Dev 20:2492–2506

    Article  CAS  PubMed  Google Scholar 

  8. Wolcott CD, Rallison ML (1972) Infancy-onset diabetes mellitus and multiple epiphyseal dysplasia. J Pediatr 80:292–297

    Article  CAS  PubMed  Google Scholar 

  9. Delépine M, Nicolino M, Barrett T, Golamaully M, Lathrop GM, Julier C (2000) EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott–Rallison syndrome. Nat Genet 25:406–409

    Article  PubMed  Google Scholar 

  10. Zhang P, McGrath B, Li S, Frank A, Zambito F, Reinert J, Gannon M, Ma K, McNaughton K, Cavener DR (2002) The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol Cell Biol 22:3864–3874

    Article  CAS  PubMed  Google Scholar 

  11. Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, Li L, Brancorsini S, Sassone-Corsi P, Townes TM, Hanauer A, Karsenty G (2004) ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Cell 117:387–398

    Article  CAS  PubMed  Google Scholar 

  12. Wei J, Sheng X, Feng D, McGrath B, Cavener DR (2008) PERK is essential for neonatal skeletal development to regulate osteoblast proliferation and differentiation. J Cell Physiol 217:693–707

    Article  CAS  PubMed  Google Scholar 

  13. Yoshida H (2007) ER stress and diseases. FEBS J 274:630–658

    Article  CAS  PubMed  Google Scholar 

  14. Ni M, Lee AS (2007) ER chaperones in mammalian development and human diseases. FEBS Lett 581:3641–3651

    Article  CAS  PubMed  Google Scholar 

  15. Katayama T, Imaizumi K, Sato N, Miyoshi K, Kudo T, Hitomi J, Morihara T, Yoneda T, Gomi F, Mori Y, Nakano Y, Takeda J, Tsuda T, Itoyama Y, Murayama O, Takashima A, George-Hyslop PS, Takeda M, Tohyama M (1999) Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nat Cell Biol 1:479–485

    Article  CAS  PubMed  Google Scholar 

  16. Rao RV, Peel A, Logvinova A, del Rio G, Hermel E, Yokota T, Goldsmith PC, Ellerby LM, Ellerby HM, Bredesen DE (2002) Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett 514:122–128

    CAS  PubMed  Google Scholar 

  17. Kudo T, Kanemoto S, Hara H, Morimoto N, Morihara T, Kimura R, Tabira T, Imaizumi K, Takeda M (2008) A molecular chaperone inducer protects neurons from ER stress. Cell Death Differ 15:364–375

    Article  CAS  PubMed  Google Scholar 

  18. Nampei A, Hashimoto J, Hayashida K, Tsuboi H, Shi K, Tsuji I, Miyashita H, Yamada T, Matsukawa N, Matsumoto M, Morimoto S, Ogihara T, Ochi T, Yoshikawa H (2004) Matrix extracellular phosphoglycoprotein (MEPE) is highly expressed in osteocytes in human bone. J Bone Miner Metab 22:176–184

    Article  CAS  PubMed  Google Scholar 

  19. Jowsey J, Phil D, Kelly PJ, Riggs BL, Bianco AJ Jr, Scholz DA, Gershon-Cohen J (1965) Quantitative microradiographic studies of normal and osteoporotic bone. J Bone Joint Surg Am 47:785–806

    CAS  PubMed  Google Scholar 

  20. Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem M (2001) Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2:165–171

    Article  CAS  PubMed  Google Scholar 

  21. Kondo S, Murakami T, Tatsumi K, Ogata M, Kanemoto S, Otori K, Iseki K, Wanaka A, Imaizumi K (2005) OASIS, a CREB/ATF-family member, modulates UPR signalling in astrocytes. Nat Cell Biol 7:186–194

    Article  CAS  PubMed  Google Scholar 

  22. Takano-Yamamoto T, Rodan GA (1990) Direct effects of 17β-estradiol on trabecular bone in ovariectomized rats. Proc Natl Acad Sci USA 87:2127–2176

    Article  Google Scholar 

  23. Kawaguchi H, Pilbeam CC, Vargas SJ, Morse EE, Lorenzo JA, Raisz LG (1995) Ovariectomy enhances and estrogen replacement inhibits the activity of bone marrow factors that stimulate prostaglandin production in cultured mouse calvariae. J Clin Invest 96:539–548

    Article  CAS  PubMed  Google Scholar 

  24. Omi N, Ezawa I (1995) The effect of ovariectomy on bone metabolism in rats. Bone 17:163S–168S

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Keisuke Goto for performing the surgeries and kindly making tissue available from patients, as well as Ai Ikeda and Tomoko Kawanami for their technical assistance in the laboratory. This study was supported by the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation, the Takeda Science Foundation, and the Mochida Memorial Foundation for Medical and Pharmaceutical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Imaizumi.

About this article

Cite this article

Hino, Si., Kondo, S., Yoshinaga, K. et al. Regulation of ER molecular chaperone prevents bone loss in a murine model for osteoporosis. J Bone Miner Metab 28, 131–138 (2010). https://doi.org/10.1007/s00774-009-0117-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-009-0117-z

Keywords

Navigation