Skip to main content

Advertisement

Log in

Inhibition of the classical NF-κB pathway prevents osteoclast bone-resorbing activity

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The classical NF-κB pathway plays an important role in osteoclast formation and differentiation; however, the role of NF-κB in osteoclast bone-resorbing activity is not well understood. To elucidate whether NF-κB is important for osteoclast bone-resorbing activity, we used a selective peptide inhibitor of the classical NF-κB pathway named the NBD peptide. Osteoclasts were generated using bone marrow macrophages in the presence of M-CSF and RANKL. The NBD peptide dose-dependently blocked the bone-resorbing activity of osteoclasts by reducing area, volume (p < 0.001) and depths (p < 0.05) of pits. The reduced resorption by the peptide was due to reduced osteoclast bone-resorbing activity, but not reduced differentiation as the number of osteoclasts was similar in all groups. The peptide inhibited bone resorption by reducing TRAP activity, disrupting actin rings and preventing osteoclast migration. Gene expressions of a panel of bone resorption markers were significantly reduced. The NBD peptide dose-dependently reduced the RANKL-induced c-Src kinase activity, which is important for actin ring formation and osteoclast bone resorption. Therefore, these data suggest that the classical NF-κB pathway plays a pivotal role in osteoclast bone-resorbing activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bruzzaniti A, Baron R (2006) Molecular regulation of osteoclast activity. Rev Endocr Metab Disord 7:123–139

    Article  PubMed  CAS  Google Scholar 

  2. Kirstein B, Chambers TJ, Fuller K (2006) Secretion of tartrate-resistant acid phosphatase by osteoclasts correlates with resorptive behavior. J Cell Biochem 98:1085–1094

    Article  PubMed  CAS  Google Scholar 

  3. Nakamura I, Pilkington MF, Lakkakorpi PT, Lipfert L, Sims SM, Dixon SJ, Rodan GA, Duong LT (1999) Role of αvβ3 integrin in osteoclast migration and formation of the sealing zone. J Cell Sci 112:3985–3993

    PubMed  CAS  Google Scholar 

  4. Vaananen HK, Horton M (1995) The osteoclast clear zone is a specialized cell-extracellular matrix adhesion structure. J Cell Sci 108:2729–2732

    PubMed  CAS  Google Scholar 

  5. Gil-Henn H, Destaing O, Sims NA, Aoki K, Alles N, Neff L, Sanjay A, Bruzzaniti A, De Camilli P, Baron R, Schlessinger J (2007) Defective microtubule-dependent podosome organization in osteoclasts leads to increased bone density in Pyk2−/- mice. J Cell Biol 178:1053–1064

    Article  PubMed  CAS  Google Scholar 

  6. Xiao G, Rabson AB, Young W, Qing G, Qu Z (2006) Alternative pathways of NF-κB activation: a double-edged sword in health and disease. Cytokine Growth Factor Rev 17:281–293

    Article  PubMed  CAS  Google Scholar 

  7. Boyce BF, Xing L, Franzoso G, Siebenlist U (1999) Required and nonessential functions of nuclear factor-kappa B in bone cells. Bone 25:137–139

    Article  PubMed  CAS  Google Scholar 

  8. May MJ, D’Acquisto F, Madge LA, Glockner J, Pober JS, Ghosh S (2000) Selective inhibition of NF-κB activation by a peptide that blocks the interaction of NEMO with the IκB kinase complex. Science 289:1550–1554

    Article  PubMed  CAS  Google Scholar 

  9. Jimi E, Aoki K, Saito H, D’Acquisto F, May MJ, Nakamura I, Sudo T, Kojima T, Okamoto F, Fukushima H, Okabe K, Ohya K, Ghosh S (2004) Selective inhibition of NF-κB blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat Med 10:617–624

    Article  PubMed  CAS  Google Scholar 

  10. May MJ, Marienfeld RB, Ghosh S (2002) Characterization of the IκB-kinase NEMO binding domain. J Biol Chem 277:45992–46000

    Article  PubMed  CAS  Google Scholar 

  11. Sato K, Suematsu A, Nakashima T, Takemoto-Kimura S, Aoki K, Morishita Y, Asahara H, Ohya K, Yamaguchi A, Takai T, Kodama T, Chatila TA, Bito H, Takayanagi H (2006) Regulation of osteoclast differentiation and function by the CaMK–CREB pathway. Nat Med 12:1410–1416

    Article  PubMed  CAS  Google Scholar 

  12. Saito H, Soysa NS, Alles N, Aoki K, Ohya K (2006) Three-dimensional measurements of bone resorption lacunae reveal inhibition of osteoclast activity by TNF-α antagonists in vitro. Dent Jpn 42:35–37

    Google Scholar 

  13. Aoki K, Saito H, Itzstein C, Ishiguro M, Shibata T, Blanque R, Mian AH, Takahashi M, Suzuki Y, Yoshimatsu M, Yamaguchi A, Deprez P, Mollat P, Murali R, Ohya K, Horne WC, Baron R (2006) A TNF receptor loop peptide mimic blocks RANK ligand-induced signaling, bone resorption, and bone loss. J Clin Invest 116:1525–1534

    Article  PubMed  CAS  Google Scholar 

  14. David JP, Sabapathy K, Hoffmann O, Idarraga MH, Wagner EF (2002) JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and -independent mechanisms. J Cell Sci 115:4317–4325

    Article  PubMed  CAS  Google Scholar 

  15. Nakasato YR, Janckila AJ, Halleen JM, Vaananen HK, Walton SP, Yam LT (1999) Clinical significance of immunoassays for type-5 tartrate-resistant acid phosphatase. Clin Chem 45:2150–2157

    PubMed  CAS  Google Scholar 

  16. Mangashetti LS, Khapli SM, Wani MR (2005) IL-4 inhibits bone-resorbing activity of mature osteoclasts by affecting NF-κB and Ca2+ signaling. J Immunol 175:917–925

    PubMed  CAS  Google Scholar 

  17. Nakamura I, Kadono Y, Takayanagi H, Jimi E, Miyazaki T, Oda H, Nakamura K, Tanaka S, Rodan GA, Duong le T (2002) IL-1 regulates cytoskeletal organization in osteoclasts via TNF receptor-associated factor 6/c-Src complex. J Immunol 168:5103–5109

    PubMed  CAS  Google Scholar 

  18. Miyazaki T, Sanjay A, Neff L, Tanaka S, Horne WC, Baron R (2004) Src kinase activity is essential for osteoclast function. J Biol Chem 279:17660–17666

    Article  PubMed  CAS  Google Scholar 

  19. Miyazaki T, Takayanagi H, Isshiki M, Takahashi T, Okada M, Fukui Y, Oda H, Nakamura K, Hirai H, Kurokawa T, Tanaka S (2000) In vitro and in vivo suppression of osteoclast function by adenovirus vector-induced csk gene. J Bone Miner Res 15:41–51

    Article  PubMed  CAS  Google Scholar 

  20. Shibata W, Maeda S, Hikiba Y, Yanai A, Ohmae T, Sakamoto K, Nakagawa H, Ogura K, Omata M (2007) Cutting edge: The IκB kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks inflammatory injury in murine colitis. J Immunol 179:2681–2685

    PubMed  CAS  Google Scholar 

  21. Strickland I, Ghosh S (2006) Use of cell permeable NBD peptides for suppression of inflammation. Ann Rheum Dis 65(Suppl 3):iii75–iii82

    Article  PubMed  Google Scholar 

  22. Fuller K, Wong B, Fox S, Choi Y, Chambers TJ (1998) TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J Exp Med 188:997–1001

    Article  PubMed  CAS  Google Scholar 

  23. Burgess TL, Qian Y, Kaufman S, Ring BD, Van G, Capparelli C, Kelley M, Hsu H, Boyle WJ, Dunstan CR, Hu S, Lacey DL (1999) The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J Cell Biol 145:527–538

    Article  PubMed  CAS  Google Scholar 

  24. Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I, Morony S, Rubin E, Sarao R, Hojilla CV, Komnenovic V, Kong YY, Schreiber M, Dixon SJ, Sims SM, Khokha R, Wada T, Penninger JM (2006) Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440:692–696

    Article  PubMed  CAS  Google Scholar 

  25. McHugh KP, Kitazawa S, Teitelbaum SL, Ross FP (2001) Cloning and characterization of the murine β3 integrin gene promoter: identification of an interleukin-4 responsive element and regulation by STAT-6. J Cell Biochem 81:320–332

    Article  PubMed  CAS  Google Scholar 

  26. Soriano P, Montgomery C, Geske R, Bradley A (1991) Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64:693–702

    Article  PubMed  CAS  Google Scholar 

  27. Boyce BF, Yoneda T, Lowe C, Soriano P, Mundy GR (1992) Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J Clin Invest 90:1622–1627

    Article  PubMed  CAS  Google Scholar 

  28. Sanjay A, Houghton A, Neff L, DiDomenico E, Bardelay C, Antoine E, Levy J, Gailit J, Bowtell D, Horne WC, Baron R (2001) Cbl associates with Pyk2 and Src to regulate Src kinase activity, αvβ3 integrin-mediated signaling, cell adhesion, and osteoclast motility. J Cell Biol 152:181–195

    Article  PubMed  CAS  Google Scholar 

  29. Nakamura I, Jimi E, Duong LT, Sasaki T, Takahashi N, Rodan GA, Suda T (1998) Tyrosine phosphorylation of p130Cas is involved in actin organization in osteoclasts. J Biol Chem 273:11144–11149

    Article  PubMed  CAS  Google Scholar 

  30. Matsubara T, Myoui A, Ikeda F, Hata K, Yoshikawa H, Nishimura R, Yoneda T (2006) Critical role of cortactin in actin ring formation and osteoclastic bone resorption. J Bone Miner Metab 24:368–372

    Article  PubMed  CAS  Google Scholar 

  31. Duong LT, Lakkakorpi PT, Nakamura I, Machwate M, Nagy RM, Rodan GA (1998) PYK2 in osteoclasts is an adhesion kinase, localized in the sealing zone, activated by ligation of αvβ3 integrin, and phosphorylated by src kinase. J Clin Invest 102:881–892

    Article  PubMed  CAS  Google Scholar 

  32. Li YP, Chen W (1999) Characterization of mouse cathepsin K gene, the gene promoter, and the gene expression. J Bone Miner Res 14:487–499

    Article  PubMed  CAS  Google Scholar 

  33. Ogawa K, Chen F, Kuang C, Chen Y (2004) Suppression of matrix metalloproteinase-9 transcription by transforming growth factor-β is mediated by a nuclear factor-κB site. Biochem J 381:413–422

    Article  PubMed  CAS  Google Scholar 

  34. Takatsuna H, Asagiri M, Kubota T, Oka K, Osada T, Sugiyama C, Saito H, Aoki K, Ohya K, Takayanagi H, Umezawa K (2005) Inhibition of RANKL-induced osteoclastogenesis by (−)-DHMEQ, a novel NF-κB inhibitor, through downregulation of NFATc1. J Bone Miner Res 20:653–662

    Article  PubMed  CAS  Google Scholar 

  35. Ikeda F, Nishimura R, Matsubara T, Hata K, Reddy SV, Yoneda T (2006) Activation of NFAT signal in vivo leads to osteopenia associated with increased osteoclastogenesis and bone-resorbing activity. J Immunol 177:2384–2390

    PubMed  CAS  Google Scholar 

  36. Asagiri M, Sato K, Usami T, Ochi S, Nishina H, Yoshida H, Morita I, Wagner EF, Mak TW, Serfling E, Takayanagi H (2005) Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 202:1261–1269

    Article  PubMed  CAS  Google Scholar 

  37. Matsumoto M, Kogawa M, Wada S, Takayanagi H, Tsujimoto M, Katayama S, Hisatake K, Nogi Y (2004) Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1. J Biol Chem 279:45969–45979

    Article  PubMed  CAS  Google Scholar 

  38. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901

    Article  PubMed  CAS  Google Scholar 

  39. Crotti TN, Flannery M, Walsh NC, Fleming JD, Goldring SR, McHugh KP (2006) NFATc1 regulation of the human β3 integrin promoter in osteoclast differentiation. Gene 372:92–102

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Michael J. May, University of Pennsylvania, for providing us with the NBD peptide and the immense help in preparation of this manuscript. We also would like to thank Dr. So Aoki for the preliminary experiment on this study. This study was supported by the grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan, to H.S. (18390497), K.A. (19390472) and K.O. (19390471).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Aoki.

About this article

Cite this article

Soysa, N.S., Alles, N., Shimokawa, H. et al. Inhibition of the classical NF-κB pathway prevents osteoclast bone-resorbing activity. J Bone Miner Metab 27, 131–139 (2009). https://doi.org/10.1007/s00774-008-0026-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-008-0026-6

Keywords

Navigation