Skip to main content
Log in

Bone mineral density and its relationship with body mass index in postmenopausal women with type 2 diabetes mellitus in mainland China

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Bone mineral density (BMD) and its association with body mass index (BMI) are uncertain in postmenopausal women with type 2 diabetes mellitus (T2DM) in mainland China. This study was performed to assess this association including 1,042 postmenopausal women with T2DM and 919 non-diabetic control subjects. Bone mineral density of the posteroanterior spine and of the left hip was measured by use of dual-energy X-ray absorptiometry. Diabetic participants were divided into three groups according to BMI, i.e. low BMI (DML < 18.5 kg/m2), intermediate BMI (DMM 18.5–24.9 kg/m2), and high BMI (DMH ≥ 25 kg/m2). The BMD values of diabetic subjects between groups exhibited a significant gradient difference, with DML < DMM < DMH. On the fitting curves, where BMD in various skeletal regions varied with age, BMDs of DML were approximately 15% lower than those of DMM, and those of DMM were approximately 10% lower than those of DMH. For prevalence and risks of osteoporosis a gradient difference was observed among diabetic groups, DML > DMM ≈ control > DMH. The osteoporosis risk was higher for the hip than for the lumbar spine, especially in DML. This study indicated that postmenopausal women with T2DM had higher BMD and lower osteoporosis risk in the lumbar spine, and that lower BMI was an indicator of osteoporosis in mainland China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kao WH, Kammerer CM, Schneider JL, Bauer RL, Mitchell BD (2003) Type 2 diabetes is associated with increased bone mineral density in mexican-american women. Arch Med Res 34:399–406

    Article  PubMed  Google Scholar 

  2. Dennison EM, Syddall HE, Aihie Sayer A, Craighead S, Phillips DI, Cooper C (2004) Type 2 diabetes mellitus is associated with increased axial bone density in men and women from the Hertfordshire cohort study: evidence for an indirect effect of insulin resistance? Diabetologia 47:1963–1968

    Article  PubMed  CAS  Google Scholar 

  3. Gerdhem P, Isaksson A, Akesson K, Obrant KJ (2005) Increased bone density and decreased bone turnover, but no evident alteration of fracture susceptibility in elderly women with diabetes mellitus. Osteoporos Int 16:1506–1512

    Article  PubMed  CAS  Google Scholar 

  4. Tuominen JT, Impivaara O, Puukka P, Ronnemaa T (1999) Bone mineral density in patients with type 1 and type 2 diabetes. Diabetes Care 1999:1196–1200

    Article  Google Scholar 

  5. Sosa M, Dominguez M, Navarro MC, Segarra MC, Hernandez D, de Pablos P, Betancor P (1996) Bone mineral metabolism is normal in non-insulin-dependent diabetes mellitus. J Diabetes Complications 10:201–205

    Article  PubMed  CAS  Google Scholar 

  6. Majima T, Komatsu Y, Yamada T, Koike Y, Shigemoto M, Takagi C, Hatanaka I, Nakao K (2005) Decreased bone mineral density at the distal radius, but not at the lumbar spine or the femoral neck, in Japanese type 2 diabetic patients. Osteoporos Int 16:907–913

    Article  PubMed  CAS  Google Scholar 

  7. Hawker GA, Jamal SA, Ridout R, Chase C (2002) A clinical prediction rule to identify premenopausal women with low bone mass. Osteoporos Int 13:400–406

    Article  PubMed  CAS  Google Scholar 

  8. Ho AY, Kung AW (2005) Determinants of peak bone mineral density and bone area in young women. J Bone Miner Metab 23:470–475

    Article  PubMed  Google Scholar 

  9. Espallargues M, Sampietro-Colom L, Estrada MD, Sola M, del Rio L, Setoain J, Granados A (2001) Identifying bone-mass-related risk factors for fracture to guide bone densitometry measurements: a systematic review of the literature. Osteoporos Int 12:811–822

    Article  PubMed  CAS  Google Scholar 

  10. Wang MC, Bachrach LK, Van Loan M, Hudes M, Flegal KM, Crawford PB (2005) The relative contributions of lean tissue mass and fat mass to bone density in young women. Bone 37:474–481

    Article  PubMed  CAS  Google Scholar 

  11. Barrera G, Bunout D, Gattas V, de la Maza MP, Leiva L, Hirsch S (2004) A high body-mass index protects against femoral neck osteoporosis in health elderly subjects. Nutrition 20:769–771

    Article  PubMed  Google Scholar 

  12. Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int 18:427–444

    Article  PubMed  CAS  Google Scholar 

  13. Lauderdale DS, Rathouz PJ (2000) Body-mass index in a US national sample of Asian Americans: effects of nativity, years since immigration and socioeconomic status. Int J Obes Relat Metab Disord 24:1188–1194

    Article  PubMed  CAS  Google Scholar 

  14. Torrens JI, Skurnick J, Davidow AL, Korenman SG, Santoro N, Soto-Greene M, Lasser N, Weiss G, Study of women’s health across the nation (SWAN) (2004) Ethnic differences in insulin sensitivity and beta-cell function in premenopausal or early perimenopausal women without diabetes: the study of women’s health across the nation (SWAN). Diabetes Care 27:354–361

    Article  PubMed  Google Scholar 

  15. Wu XP, Liao EY, Huang G, Dai RC, Zhang H (2003) A comparison study of the reference curves of bone mineral density at different skeletal sites in native Chinese, Japanese, and American Caucasian women. Calcif Tissue Int 73:122–132

    Article  PubMed  CAS  Google Scholar 

  16. Wu XP, Liao EY, Luo XH, Zhang H, Dai RC, Huang G (2003) Establishment and evaluation of bone mineral density reference databases appropriate for diagnosis and evaluation of osteoporosis in mainland Chinese women and the diagnosis of osteoporosis. J Bone Miner Metab 21:184–192

    Article  PubMed  Google Scholar 

  17. World Health Organization (2000) The Asia-Pacific perspective: redefining obesity and its treatment. World Health Organization, Geneva

    Google Scholar 

  18. Kanis JA, Melton LJ 3rd, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141

    Article  PubMed  CAS  Google Scholar 

  19. Register TC, Lenchik L, Hsu FC, Lohman KK, Freedman BI, Bowden DW, Carr JJ (2006) Type 2 diabetes is not independently associated with spinal trabecular volumetric bone mineral density measured by QCT in the diabetes heart study. Bone 39:628–633

    Article  PubMed  CAS  Google Scholar 

  20. van Daele PL, Stolk RP, Burger H, Algra D, Grobbee DE, Hofman A, Birkenhäger JC, Pols HA (1995) Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam study. Ann Intern Med 122:409–414

    PubMed  Google Scholar 

  21. Ford ES, Giles WH, Dietz WH (2002) Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 287:356–359

    Article  PubMed  Google Scholar 

  22. Gu D, Reynolds K, Wu X, Chen J, Duan X, Reynolds RF, Whelton PK, He J, InterASIA Collaborative Group (2005) Prevalence of the metabolic syndrome and overweight among adults in China. Lancet 365:1398–1405

    Article  PubMed  Google Scholar 

  23. Perry HM 3rd, Bernard M, Horowitz M, Miller DK, Fleming S, Baker MZ, Flaherty J, Purushothaman R, Hajjar R, Kaiser FE, Patrick P, Morley JE (1998) The effect of aging on bone mineral metabolism and bone mass in native American women. J Am Geriatr Soc 46:1418–1422

    PubMed  Google Scholar 

  24. Christensen JO, Svendsen OL (1999) Bone mineral in pre- and postmenopausal women with insulin-dependent and non-insulin-dependent diabetes mellitus. Osteoporos Int 10:307–311

    Article  PubMed  CAS  Google Scholar 

  25. Leite Duarte ME, da Silva RD (1996) Histomorphometric analysis of the bone tissue in patients with non-insulin-dependent diabetes (DMNID). Rev Hosp Clin Fac Med Sao Paulo 51:7–11

    PubMed  CAS  Google Scholar 

  26. Korpelainen R, Korpelainen J, Heikkinen J, Vaananen K, Keinanen-Kiukaanniemi S (2003) Lifestyle factors are associated with osteoporosis in lean women but not in normal and overweight women: a population-based cohort study of 1,222 women. Osteoporos Int 14:34–43

    Article  PubMed  CAS  Google Scholar 

  27. Szulc P, Garnero P, Claustrat B, Marchand F, Duboeuf F, Delmas PD (2002) Increased bone resorption in moderate smokers with low body weight: the minos study. J Clin Endocrinol Metab 87:666–674

    Article  PubMed  CAS  Google Scholar 

  28. Daly RM, Dunstan DW, Owen N, Jolley D, Shaw JE, Zimmet PZ (2005) Does high-intensity resistance training maintain bone mass during moderate weight loss in older overweight adults with type 2 diabetes? Osteoporos Int 16:1703–1712

    Article  PubMed  Google Scholar 

  29. Jensen LB, Kollerup G, Quaade F, Sorensen OH (2001) Bone minerals changes in obese women during a moderate weight loss with and without calcium supplementation. J Bone Miner Res 16:141–147

    Article  PubMed  CAS  Google Scholar 

  30. De Laet C, Kanis JA, Oden A, Johanson H, Johnell O, Delmas P, Eisman JA, Kroger H, Fujiwara S, Garnero P, McCloskey EV, Mellstrom D, Melton LJ 3rd, Meunier PJ, Pols HA, Reeve J, Silman A, Tenenhouse A (2005) Body-mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16:1330–1338

    Article  PubMed  Google Scholar 

  31. Malmivaara A, Heliovaara M, Knekt P, Reunanen A, Aromaa A (1993) Risk factors for injurious falls leading to hospitalization or death in a cohort of 19,500 adults. Am J Epidemiol 138:384–394

    PubMed  CAS  Google Scholar 

  32. Schwartz AV, Hillier TA, Sellmeyer DE, Resnick HE, Gregg E, Ensrud KE, Schreiner PJ, Margolis KL, Cauley JA, Nevitt MC, Black DM, Cummings SR (2002) Older women with diabetes have a higher risk of falls: a prospective study. Diabetes Care 25:1749–1754

    Article  PubMed  Google Scholar 

  33. Yamamoto M, Yamaguchi T, Yamauchi M, Kaji H, Sugimoto T (2007) Bone mineral density is not sensitive enough to assess the risk of vertebral fractures in type 2 diabetic women. Calcif Tissue Int 80:353–358

    Article  PubMed  CAS  Google Scholar 

  34. Liao EY, Wu XP, Deng XG, Huang G, Zhu XP, Long ZF, Wang WB, Tang WL, Zhang H (2002) Age-related bone mineral density, accumulated bone loss rate and prevalence of osteoporosis at multiple skeletal sites in Chinese women. Osteoporos Int 13:669–676

    Article  PubMed  Google Scholar 

  35. Schousboe JT, Wilson KE, Kiel DP (2006) Detection of abdominal aortic calcification with lateral spine imaging using DXA. J Clin Densitom 9:302–308

    Article  PubMed  Google Scholar 

  36. Grey A, Bolland M, Gamble G, Wattie D, Horne A, Davidson J, Reid IR (2007) The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab 92:1305–1310

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported in part by the Ministry of Health of Peoples Republic of China (20012738). We thank our diabetic patients and normal controls for their participation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Er-Yuan Liao.

About this article

Cite this article

Shan, PF., Wu, XP., Zhang, H. et al. Bone mineral density and its relationship with body mass index in postmenopausal women with type 2 diabetes mellitus in mainland China. J Bone Miner Metab 27, 190–197 (2009). https://doi.org/10.1007/s00774-008-0023-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-008-0023-9

Keywords

Navigation