Skip to main content

Advertisement

Log in

Distributed-integrated model predictive control for cooperative operation with multi-vessel systems

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

This paper proposes a novel Distributed-Integrated Model Predictive Control (DI-MPC) strategy for the multi-vessel cooperative path following, formation control and obstacle avoidance. Each vessel is designed with an individually distributed controller based on the MPC theory and communication graph. Subject to actuator limitations and formation constraints, the motion control and thrust allocation are integrated into a dynamic model to achieve direct control to the thrusters. A bivariate thrust efficiency matrix is embedded into the model to consider the hydrodynamic interaction effects between adjacent thrusters. The Nominal System is introduced to generate the linearized predictive model. To achieve consensus among various vessels, a real-time iterative negotiation framework is established. The Kalman Filter is utilized to estimate the low-frequency state variables from the external disturbances of environment loads and measurement noises. Numerical simulations based on the proposed distributed strategy and the centralized strategy are carried out under the scenario of cooperative operation in the Huangpu River (in Shanghai). Comparative analysis results demonstrate the high control performance of both the strategies. DI-MPC mainly contributes to the system flexibility, computational cost reduction (67.65%), energy consumption reduction (5.03%) and fault-tolerant capability. Furthermore, DI-MPC also shows strong applicability to large-scale cooperative control problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Campbell S, Naeem W, Irwin G (2012) A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres. Annu Rev Control 36:267–283

    Article  Google Scholar 

  2. Liu Z, Zhang Y, Yu X, Yuan C (2016) Unmanned surface vehicles: An overview of developments and challenges. Annu Rev Control 41:71–93

    Article  Google Scholar 

  3. Adamek T, Kitts CA, Mas I (2015) Gradient-based cluster space navigation for autonomous surface vessels. IEEE/ASME Trans Mechatron 20:506–518

    Article  Google Scholar 

  4. Raboin E, Švec P, Nau DS, Gupta SK (2015) Model-predictive asset guarding by team of autonomous surface vehicles in environment with civilian boats. Auton Robot 38:261–282

    Article  Google Scholar 

  5. Lu Y, Zhang G, Sun Z, Zhang W (2018) Robust adaptive formation control of underactuated autonomous surface vessels based on mlp and dob. Nonlinear Dyn 94:503–519

    Article  MATH  Google Scholar 

  6. Huang Y, Chen L, van Gelder P (2019) Generalized velocity obstacle algorithm for preventing ship collisions at sea. Ocean Eng 173:142–156

    Article  Google Scholar 

  7. Li S, Liu J, Negenborn RR (2019) Distributed coordination for collision avoidance of multiple ships considering ship maneuverability. Ocean Eng 181:212–226

    Article  Google Scholar 

  8. Chen L, Hopman H, Negenborn RR (2018) Distributed model predictive control for vessel train formations of cooperative multi-vessel systems. Transp Res Part C Emerg Technol 92:101–118

    Article  Google Scholar 

  9. Chen L, Hopman H, Negenborn RR (2019) Distributed model predictive control for cooperative floating object transport with multi-vessel systems. Ocean Eng 191:106515

    Article  Google Scholar 

  10. Kayacan E, Park S, Ratti C, Rus D (2019) Learning-based nonlinear model predictive control of reconfigurable autonomous robotic boats: Roboats, in: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8230–8237

  11. Wolf MT, Rahmani A, de la Croix JP, Woodward G, Hook JV, Brown D, Schaffer S, Lim C, Bailey P, Tepsuporn S, Pomerantz M, Nguyen V, Sorice C, Sandoval M (2017) CARACaS multi-agent maritime autonomy for unmanned surface vehicles in the Swarm II harbor patrol demonstration. In: Karlsen RE, Gage DW, Shoemaker CM, Nguyen HG (eds) Unmanned systems technology XIX. International Society for Optics and Photonics, SPIE, pp 218–228

    Google Scholar 

  12. Rowley J (2018) Autonomous unmanned surface vehicles (usv): A paradigm shift for harbor security and underwater bathymetric imaging, in: OCEANS 2018 MTS/IEEE Charleston, pp. 1–6

  13. Annamalai AS, Sutton R, Yang C, Culverhouse P, Sharma S (2014) Innovative adaptive autopilot design for uninhabited surface vehicles. IET Conf Publ 2014:158–163

    Google Scholar 

  14. Švec P, Thakur A, Raboin E, Shah BC, Gupta SK (2014) Target following with motion prediction for unmanned surface vehicle operating in cluttered environments. Auton Robot 36:383–405

    Article  Google Scholar 

  15. Liu C, Zou ZJ, Yin JC (2014) Path following and stabilization of underactuated surface vessels based on adaptive hierarchical sliding mode. Int J Innov Comput Inf Control 10:909–918

    Google Scholar 

  16. Ma B (2009) Global k-exponential asymptotic stabilization of underactuated surface vessels. Syst Control Lett 58:194–201

    Article  MathSciNet  MATH  Google Scholar 

  17. Papadopoulos G, Fallon MF, Leonard JJ, Patrikalakis NM (2010) Cooperative localization of marine vehicles using nonlinear state estimation, in: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4874–4879

  18. Ghommam J, Saad M (2018) Adaptive leader-follower formation control of underactuated surface vessels under asymmetric range and bearing constraints. IEEE Trans Veh Technol 67:852–865

    Article  Google Scholar 

  19. Hinostroza M, Xu H, Guedes Soares C (2021) Experimental results of the cooperative operation of autonomous surface vehicles navigating in complex marine environment. Ocean Eng 219:108256

    Article  Google Scholar 

  20. Peng Z, Wang D, Li T, Han M (2020) Output-feedback cooperative formation maneuvering of autonomous surface vehicles with connectivity preservation and collision avoidance. IEEE Trans Cybern 50:2527–2535

    Article  Google Scholar 

  21. Chen S, Wu Z, Christofides PD (2021) Cyber-security of centralized, decentralized, and distributed control-detector architectures for nonlinear processes. Chem Eng Res Des 165:25–39

    Article  Google Scholar 

  22. Peng Z, Wang J, Wang D, Han QL (2021) An overview of recent advances in coordinated control of multiple autonomous surface vehicles. IEEE Trans Industr Inf 17:732–745

    Article  Google Scholar 

  23. Almeida J, Silvestre C, Pascoal A (2010) Cooperative control of multiple surface vessels in the presence of ocean currents and parametric model uncertainty. Int J Robust Nonlinear Control 20:1549–1565

    Article  MathSciNet  MATH  Google Scholar 

  24. Shojaei K (2016) Neural network formation control of underactuated autonomous underwater vehicles with saturating actuators. Neurocomputing 194:372–384

    Article  Google Scholar 

  25. Lu Y, Zhang G, Sun Z, Zhang W (2018) Adaptive cooperative formation control of autonomous surface vessels with uncertain dynamics and external disturbances. Ocean Eng 167:36–44

    Article  Google Scholar 

  26. Zhou X, Wu P, Zhang H, Guo W, Liu Y (2019) Learn to navigate: Cooperative path planning for unmanned surface vehicles using deep reinforcement learning. IEEE Access 7:165262–165278

    Article  Google Scholar 

  27. Dai L, Cao Q, Xia Y, Gao Y (2017) Distributed mpc for formation of multi-agent systems with collision avoidance and obstacle avoidance. J Franklin Inst 354:2068–2085

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu C, Zheng H, Negenborn RR, Chu X, Wang L (2015) Trajectory tracking control for underactuated surface vessels based on nonlinear model predictive control, in: Corman, F., Voß, S., Negenborn, R.R. (Eds.), Computational Logistics, pp. 166–180

  29. Liu C, Zheng H, Negenborn R, Chu X, Xie S (2021) Adaptive predictive path following control based on least squares support vector machines for underactuated autonomous vessels. Asian J Control 23:432–448

    Article  Google Scholar 

  30. Fan Z, Li H (2017) Two-layer model predictive formation control of unmanned surface vehicle, in: 2017 Chinese Automation Congress (CAC), pp. 6002–6007

  31. Droge G (2015) Distributed virtual leader moving formation control using behavior-based mpc, in: 2015 American Control Conference (ACC), pp. 2323–2328

  32. Wei H, Sun Q, Chen J, Shi Y (2021) Robust distributed model predictive platooning control for heterogeneous autonomous surface vehicles. Control Eng Pract 107:104655

    Article  Google Scholar 

  33. Johansen TA, Fossen TI (2013) Control allocation-a survey. Automatica 49:1087–1103

    Article  MathSciNet  MATH  Google Scholar 

  34. Yadav P, Kumar R, Panda SK, Chang CS (2012) Energy-efficient thrust allocation for semi-submersible oil rig platforms using improved harmony search algorithm. IEEE Trans Industr Inf 8:913–924

    Article  Google Scholar 

  35. Wu D, Ren F, Zhang W (2016) An energy optimal thrust allocation method for the marine dynamic positioning system based on adaptive hybrid artificial bee colony algorithm. Ocean Eng 118:216–226

    Article  Google Scholar 

  36. Gao D, Wang X, Wang T, Wang Y, Xu X (2019) Optimal thrust allocation strategy of electric propulsion ship based on improved non-dominated sorting genetic algorithm ii. IEEE Access 7:135247–135255

    Article  Google Scholar 

  37. Liu F, Tang S, Chen C (2014) Dynamic thrust allocation of dynamic positioning vessel based on model predictive control. Adv Mater Res 1049–1050:996–999

    Article  Google Scholar 

  38. Skjong S, Pedersen E (2017) Nonangular mpc-based thrust allocation algorithm for marine vessels-a study of optimal thruster commands. IEEE Trans Transp Electr 3:792–807

    Article  Google Scholar 

  39. Veksler A, Johansen TA, Borrelli F, Realfsen B (2016) Dynamic positioning with model predictive control. IEEE Trans Control Syst Technol 24:1340–1353

    Article  Google Scholar 

  40. Fossen TI (2011) Handbook of Marine Craft Hydrodynamics and Motion Control. John Wiley & Sons, Ltd. chapter 7 & 11 & 12. pp. 133–186,285–342,398–411

  41. Cozijn J, Hallmann R (2013) Thruster-interaction effects on a dp semi-submersible and a drill ship: measurement and analysis of the thruster wake flow, in: International Conference on Offshore Mechanics and Arctic Engineering, American Society of Mechanical Engineers. p. V001T01A060

  42. Cui L, Chen Z, Qin J, Zhou L (2021) Numerical research on mechanism of the effect of propeller shaft brackets on wake field and propulsion performance. Ocean Eng 228:108959

    Article  Google Scholar 

  43. Tang Z, He H, Wang L, Wang X (2021) An optimal thrust allocation algorithm with bivariate thrust efficiency function considering hydrodynamic interactions. J Mar Sci Technol

  44. Arditti F, Souza F, Martins T, Tannuri E (2015) Thrust allocation algorithm with efficiency function dependent on the azimuth angle of the actuators. Ocean Eng 105:206–216

    Article  Google Scholar 

  45. Maciejowski JM (2002) Predictive control: with constraints. Pearson education. chapter 6 & 8. pp. 187–197,263–266

  46. Li H, Liu A, Zhang L (2018) Input-to-state stability of time-varying nonlinear discrete-time systems via indefinite difference lyapunov functions. ISA Trans 77:71–76

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the support of the Ministry of Industry and Information Technology (Grant No. [2018] 473), the Science and Technology Commission of Shanghai Municipality (Grant No. 21DZ1201106) and the MARIC-SJTU Joint Innovation Foundation Project (Grant No. MS202101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiting Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Before the analysis, some assumptions and explanations are given.

1.1 Assumption 1:

The stage cost \(p(\cdot )\) is positive definite. For example, the stage cost of ASV1 equals:

$$\begin{aligned} \begin{aligned}&p(\cdot )= \sum _{j=1}^{N_{p}-1}\left( Q_{e r r}\left\| \hat{Y}_{1}(k+j \mid k)-r(k+j)\right\| _{2}^{2}\right) \\&\quad +\sum _{j=1}^{N_{p}-1} \frac{Q_{o b s A v o i d}}{\left\| \hat{Y}_{1}(k+j \mid k)-Y_{o b s}(k+j)\right\| _{2}^{2}+\gamma } \\&\quad +\sum _{j=0}^{N_{c}-2}\left( Q_{i n}\left\| U_{1}(k+j \mid k)\right\| _{2}^{2}\right) \\&\quad +\sum _{j=0}^{N_{c}-2}\left( Q_{d i n}\left\| \Delta U_{1}(k+j \mid k)\right\| _{2}^{2}\right) \end{aligned} \end{aligned}$$
(41)

1.2 Assumption 2:

Terminal set \({\mathcal {X}}_f\) is invariant under the local control law:

$$\begin{aligned} \begin{aligned}&X(k+1 \mid k)=X^{e}(k+1 \mid k)+A^{J}(k \mid k)\left( X(k \mid k) \right. \\&\quad \left. -X^{e}(k \mid k)\right) +B^{J}(k \mid k)\left( U(k \mid k)-U^{e}(k \mid k)\right) \\&\quad +G^{J}(k \mid k)\left( \tau _{\text{ env }}(k \mid k)-\tau _{env}^{e}(k \mid k)\right) \\&\quad \in {\mathcal {X}}_{f}, \text{ for } \text{ all } X(k \mid k) \in {\mathcal {X}}_{f} \end{aligned} \end{aligned}$$
(42)

All state and input constraints are satisfied in \({\mathcal {X}}_f\):

$$\begin{aligned} {\mathcal {X}}_{f} \subseteq {\mathcal {X}}, U \in {\mathcal {U}}, \text{ for } \text{ all } X(k \mid k) \in {\mathcal {X}}_{f} \end{aligned}$$
(43)

1.3 Assumption 3:

The terminal cost \(q(\cdot )\) is a continuous Lyapunov function in the terminal set \({\mathcal {X}}_f\) and satisfies [45]:

$$\begin{aligned} q\left( k+N_{p}+1 \mid k+1\right) -q\left( k+N_{p} \mid k\right) \le -p\left( k+N_{p} \mid k+1\right) \end{aligned}$$
(44)

For example, the terminal cost of ASV1 equals:

$$\begin{aligned} \begin{aligned}&q(\cdot )=q_{ter} Q_{err}\left\| \hat{Y}_{1}\left( k+N_{p} \mid k\right) -r\left( k+N_{p}\right) \right\| _{2}^{2}\\&\quad +\frac{q_{\text{ ter }} Q_{\text{ obsAvoid } }}{\left\| \hat{Y}_{1}\left( k+N_{p} \mid k\right) -Y_{obs}\left( k+N_{p}\right) \right\| _{2}^{2}+\gamma } \\&\quad +Q_{i n}\left\| U_{1}\left( k+N_{c}-1 \mid k\right) \right\| _{2}^{2}\\&\quad +Q_{din}\left\| \Delta U_{1}\left( k+N_{c}-1 \mid k\right) \right\| _{2}^{2} \end{aligned} \end{aligned}$$
(45)

1.4 Iteration feasibility:

1. For the system (24)-(25), the optimal input sequence at time step k is denoted as:

$$\begin{aligned} {\varvec{U}}^{*}(k)=\left[ U^{*}(k \mid k), U^{*}(k+1 \mid k), \ldots , U^{*}\left( k+N_{c}-1 \mid k\right) \right] \end{aligned}$$
(46)

The corresponding sequences of estimated states and outputs are:

$$\begin{aligned}&\widehat{{\varvec{X}}}(k)=\left[ \hat{X}(k+1 \mid k), \hat{X}(k+2 \mid k), \ldots , \hat{X}\left( k+N_{p} \mid k\right) \right] \end{aligned}$$
(47)
$$\begin{aligned}&\quad \widehat{{\varvec{Y}}}(k)=\left[ \hat{Y}(k+1 \mid k), \hat{Y}(k+2 \mid k), \ldots , \hat{Y}\left( k+N_{p} \mid k\right) \right] \end{aligned}$$
(48)

2. At next time step \(k+1\), the input sequence \(\left[ U^{*}(k+1 \mid k), \ldots , U^{*}\left( k+N_{c}-1 \mid k\right) , U\left( k+N_{c} \mid k+1\right) \right] \) is a feasible solution according to Assumption 2.

1.5 Definition 1:

If there exists a function \(V(\cdot )\), such that

$$\begin{aligned}&\alpha _{1}(\Vert \widehat{{\varvec{X}}}(k)\Vert ) \le V(\widehat{{\varvec{X}}}(k)) \le \alpha _{2}(\Vert \widehat{{\varvec{X}}}(k)\Vert ) \end{aligned}$$
(49)
$$\begin{aligned}&\quad V(\widehat{{\varvec{X}}}(k+1))-V(\widehat{{\varvec{X}}}(k)) \le -\alpha _{3}(\Vert \widehat{{\varvec{X}}}(k)\Vert )+\sigma (\Vert g(\widehat{{\varvec{X}}}(k), {\varvec{U}}(k))\Vert ) \end{aligned}$$
(50)

where the definitions of \({\mathcal {K}}_{\infty }\)-type functions \(\alpha _{1}\), \(\alpha _{2}\), \(\alpha _{3}\) and \({\mathbf {K}}\)-type function \(\sigma \) can be found in [46]. Then \(V(\cdot )\) is an Input to State Stable (ISS) Lyapunov function and the system (24)-(25) is ISS.

1.6 Proof:

Take the cost function (29) as an example to analyze the stability of DI-MPC controllers. Provided Assumptions 1-2 and the Iteration Feasibility are satisfied, the optimal cost at time step \(k+1\) is bounded as:

$$\begin{aligned} \begin{aligned}&J^{*}(k+1) \le \sum _{j=2}^{N_{p}} \left( Q_{e r r}\left\| \hat{Y}_{1}(k+j \mid k)-r(k+j)\right\| _{2}^{2}\right) \\&\quad +\sum _{j=2}^{N_{p}} \frac{Q_{\text{ obsAvoid }}}{\left\| \hat{Y}_{1}(k+j \mid k)-Y_{\text{ obs } }(k+j)\right\| _{2}^{2}+\gamma } \\&\quad +\sum _{j=1}^{N_{c}-1}\left( Q_{i n}\left\| U_{1}^{*}(k+j \mid k)\right\| _{2}^{2}\right) \\&\quad +\sum _{j=1}^{N_{c}-1}\left( Q_{d i n}\left\| \Delta U_{1}^{*}(k+j \mid k)\right\| _{2}^{2}\right) +q\left( k+N_{p}+1 \mid k+1\right) \\&\quad =J^{*}(k)-p(k+1 \mid k)+\left( q\left( k+N_{p}+1 \mid k+1\right) \right. \\&\quad \left. -q\left( k+N_{p} \mid k\right) +p\left( k+N_{p} \mid k+1\right) \right) \end{aligned} \end{aligned}$$
(51)

where the terms of \(p(\cdot )\) and \(q(\cdot )\) in Equation (51) are as follows:

$$\begin{aligned}&\begin{aligned}&\quad q\left( k+N_{p}+1 \mid k+1\right) \\&\quad =q_{\text{ ter } } Q_{\text{ err } }\left\| \hat{Y}_{1}\left( k+N_{p}+1 \mid k+1\right) -r\left( k+N_{p}+1\right) \right\| _{2}^{2} \\&\quad +\frac{q_{t e r} Q_{\text{ obsAvoid } }}{\left\| \hat{Y}_{1}\left( k+N_{p}+1 \mid k+1\right) -Y_{\text{ obs } }\left( k+N_{p}+1\right) \right\| _{2}^{2}+\gamma } \\&\quad +Q_{\text{ in } }\left\| U_{1}\left( k+N_{c} \mid k+1\right) \right\| _{2}^{2}+Q_{\text{ din } }\left\| \Delta U_{1}\left( k+N_{c} \mid k+1\right) \right\| _{2}^{2} \end{aligned} \end{aligned}$$
(52)
$$\begin{aligned}&\quad \begin{aligned}&\quad p\left( k+N_{p} \mid k+1\right) \\&\quad = Q_{\text{ err } }\left\| \hat{Y}_{1}\left( k+N_{p} \mid k+1\right) -r\left( k+N_{p}\right) \right\| _{2}^{2} \\&\quad +\frac{Q_{o b s A v o i d}}{\left\| \hat{Y}_{1}\left( k+N_{p} \mid k+1\right) -Y_{o b s}\left( k+N_{p}\right) \right\| _{2}^{2}+\gamma }\\&\quad +Q_{i n}\left\| U_{1}\left( k+N_{c}-1 \mid k+1\right) \right\| _{2}^{2}+Q_{{\text {din}}}\left\| \Delta U_{1}\left( k+N_{c}-1 \mid k+1\right) \right\| _{2}^{2} \end{aligned} \end{aligned}$$
(53)

According to the second instruction of iteration feasibility, Equation (53) can be rewritten as:

$$\begin{aligned}&\begin{aligned}&p\left( k+N_{p} \mid k+1\right) =Q_{e r r}\left\| \hat{Y}_{1}\left( k+N_{p} \mid k\right) -r\left( k+N_{p}\right) \right\| _{2}^{2}\\&\quad +\frac{Q_{\text{ obsAvoid } }}{\left\| {\widehat{Y}}_{1}\left( k+N_{p} \mid k\right) -Y_{o b s}\left( k+N_{p}\right) \right\| _{2}^{2}+\gamma } \\&\quad +Q_{i n}\left\| U_{1}^{*}\left( k+N_{c}-1 \mid k\right) \right\| _{2}^{2}+Q_{d i n}\left\| \Delta U_{1}^{*}\left( k+N_{c}-1 \mid k\right) \right\| _{2}^{2} \end{aligned} \end{aligned}$$
(54)
$$\begin{aligned}&\quad \begin{aligned}&\quad p(k+1 \mid k)=Q_{e r r}\left\| \hat{Y}_{1}(k+1 \mid k)-r(k+1)\right\| _{2}^{2}+\frac{Q_{\text{ obsAvoid } }}{\left\| \hat{Y}_{1}(k+1 \mid k)-Y_{o b s}(k+1)\right\| _{2}^{2}+\gamma } \\&\quad +Q_{i n}\left\| U_{1}^{*}(k \mid k)\right\| _{2}^{2}+Q_{\text{ din } }\left\| \Delta U_{1}^{*}(k \mid k)\right\| _{2}^{2} \end{aligned} \end{aligned}$$
(55)
$$\begin{aligned}&\quad \begin{aligned}&\quad q\left( k+N_{p} \mid k\right) = q_{\text{ ter } } Q_{e r r}\left\| \hat{Y}_{1}\left( k+N_{p} \mid k\right) -r\left( k+N_{p}\right) \right\| _{2}^{2}+\frac{q_{\text{ ter } } Q_{\text{ obsAvoid } }}{\left\| \hat{Y}_{1}\left( k+N_{p} \mid k\right) -Y_{\text{ obs } }\left( k+N_{p}\right) \right\| _{2}^{2}+\gamma } \\&\quad +Q_{\text{ in } }\left\| U_{1}^{*}\left( k+N_{c}-1 \mid k\right) \right\| _{2}^{2}+Q_{d i n}\left\| \Delta U_{1}^{*}\left( k+N_{c}-1 \mid k\right) \right\| _{2}^{2} \end{aligned} \end{aligned}$$
(56)

Given the terminal constraint (Assumption 3), then we can get:

$$\begin{aligned} J^{*}(k+1)-J^{*}(k)\le -p(k+1 \mid k) \end{aligned}$$
(57)

\(\alpha _{1}(\cdot )\) and \(\alpha _{2}(\cdot )\) can be found that satisfy \(\alpha _{1}(\cdot )\le J(k) \le \alpha _{2}(\cdot )\) since J(k) is a quadratic cost function. Then according to Definition 1, cost function (29) is an ISS function and the system is ISS under certain assumptions. Cost function (30) can be proved in the same way.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Wang, L., Wang, Y. et al. Distributed-integrated model predictive control for cooperative operation with multi-vessel systems. J Mar Sci Technol 27, 1281–1301 (2022). https://doi.org/10.1007/s00773-022-00905-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-022-00905-6

Keywords

Navigation