Skip to main content
Log in

Application of linear filter and moment equation for parametric rolling in irregular longitudinal waves

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

Parametric rolling is one of the dangerous dynamic phenomena. To discuss the safety of a vessel when a dangerous phenomenon occurs, it is important to estimate the probability of certain dynamical behavior of the ship with respect to a certain threshold level. In this paper, the moment values are obtained by solving the moment equations. Since the stochastic differential equation (SDE) is needed to obtain the moment equations, the autoregressive moving average (ARMA) filter is used. The effective wave is modeled using the 6th-order ARMA filter. In addition, the parametric excitation process is modeled using a non-memory transformation obtained from the relationship between GM and wave elevation. The resulting system of equations is represented by the 8th-order Itô stochastic differential equation, which consists of a second-order SDE for the ship motion and a 6th-order SDE for the effective wave. This system has nonlinear components. Therefore, the cumulant neglect closure method is used as higher-order moments need to be truncated. Furthermore, the probability density function of roll angle is determined using moment values obtained from the SDE and the moment equation. Here, two types of the probability density function are suggested and have a good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Dostal L, Kreuzer E (2011) Probabilistic approach to large amplitude ship rolling in random seas. Proc Instit Mech Eng Part C 225(10):2464

    Article  Google Scholar 

  2. Spanos PTD (1983) ARMA algorithms for ocean wave modeling. J Energy Resour Technol 105(3):300

    Article  Google Scholar 

  3. Spanos PTD (1986) Filter approaches to wave kinematics approximation. Appl Ocean Res 8(1):2

    Article  Google Scholar 

  4. Flower JO, Vijeh N (1983) A note on ratio-of-polynomials curve-fitting of seawave spectra. Int Shipbuild Prog 30(341):10

    Article  Google Scholar 

  5. Flower JO, Vijeh N (1985) Further considerations of the ratio-of-polynomials form-fit of seawave spectra. Int Shipbuild Prog 32(365):2

    Article  Google Scholar 

  6. Thampi SK, Niedzwecki JM (1992) Filter approach to ocean structure response prediction. Appl Ocean Res 14(4):259

    Article  Google Scholar 

  7. Degtyarev A.B, Reed A.M (2011) Modeling of incident waves near the ship’s hull (application of autoregressive approach in problems of simulation of rough seas), Proceedings of the 12th International Ship Stability Workshop, Washington D.C., USA pp. 175–187

  8. Degtyarev A.B, Gankevich I (2012) Evaluation of hydrodynamic pressures for autoregressive model of irregular waves, Proceedings of the 11th International Conference on the Stability of Ships and Ocean Vehicles, Athens, Greece pp. 841–851

  9. Nichita C, Luca D, Dakyo B, Ceanga E (2002) Large band simulation of the wind speed for real time wind turbine simulators. IEEE Trans Energy Convers 17(4):523

    Article  Google Scholar 

  10. Dostal L, Hollm M, Kreuzer E (2020) Study on the behavior of weakly nonlinear water waves in the presence of random wind forcing. Nonlinear Dyn 99:2319

    Article  Google Scholar 

  11. Maki A, Maruyama Y, Dostal L, Sakai M, Sawada R, Sasa K, Umeda N (2021) Practical method for evaluating wind influence on autonomous ship operations, J Marine Sci Technol (Acceptable)

  12. Watanabe K (1934) On the dynamical properties of the transverse instability of a ship due to pitching. J Soc Nav Archit Jpn. https://doi.org/10.2534/jjasnaoe1903.1934.53_51 (In Japanese)

    Article  Google Scholar 

  13. Kerwin JE (1955) Notes on rolling in longitudinal waves. Int Shipbuild Prog 2(16):597

    Article  Google Scholar 

  14. Hashimoto H, Umeda N, Ogawa Y, Taguchi H, Iseki T, Bulian G, Toki N, Ishida S, Matsuda A (2008) Prediction methods for parametric rolling with forward velocity and their validation-final report of the scape committee (part 2), Proc 6th Osaka Colloquium on Seakeeping and Stability of Ships, Osaka, Japan pp. 265–275

  15. Bulian G, Francescutto A, Umeda N, Hashimoto H (2008) Qualitative and quantitative characteristics of parametric ship rolling in random waves in the light of physical model experiments. Ocean Eng 35(17):1661

    Article  Google Scholar 

  16. Umeda N, Sakai M, Fujita N, Morimoto A, Terada D, Matsuda A (2016) Numerical prediction of parametric roll in oblique waves. Ocean Eng 120:212

    Article  Google Scholar 

  17. IMO (2020) Interim guidelines on the second generation intact stability criteria, MSC.1/Circ 1627 pp. 1–60

  18. IMO (2022) Simplified operational guidance from level 2 vulnerability assessment for parametric roll, SDC 8/WP.4/Add.5 pp. 37–40

  19. Caughey TK (1963) Derivation and application of the Fokker-Planck equation to discrete nonlinear dynamic systems subjected to white random excitation. J Acoust Soc Am 35(11):1683

    Article  MathSciNet  Google Scholar 

  20. Caughey TK (1963) Equivalent linearization techniques. J Acoust Soc Am 35(11):1706

    Article  MathSciNet  Google Scholar 

  21. Socha L (2008) Linearization methods for stochastic dynamic systemsLinearization methods for stochastic dynamic systems. Lecture notes in physics. Springer-Verlag, Heidelberg

    Google Scholar 

  22. Dostal L, Kreuzer E, Sri Namachchivaya N (2012) Non-standard stochastic averaging of large-amplitude ship rolling in random seas., Proceedings: Mathematical, Physical and Engineering Sciences 468(2148): 4146

  23. Roberts JB (1982) Effect of parametric excitation on ship rolling motion in random waves. J Ship Res 26(4):246

    Article  Google Scholar 

  24. Maruyama Y, Maki A, Dostal L, Umeda N (2021) Improved stochastic averaging method using Hamiltonian for parametric rolling in irregular longitudinal waves. J Mar Sci Technol. https://doi.org/10.1007/s00773-021-00824-y

    Article  Google Scholar 

  25. Bover DCC (1978) Moment equation methods for nonlinear stochastic systems. J Math Anal Appl 65(2):306

    Article  MathSciNet  MATH  Google Scholar 

  26. Wu WF (1987) Comparison of gaussian closure technique and equivalent linearization method. Probabilistic Eng Mech 2:2

    Article  Google Scholar 

  27. Nekrasov V.A (1994) Stochastic stability theory of ship motions, Proceedings of the 5th International Conference on the Stability of Ships and Ocean Vehicles, Melbourne, Florida, USA 5, 841

  28. Yokoyama K, Kimura K (2013) Non-gaussian response characteristics of an asymmetric nonlinear system subjected to nonwhite excitation (relationship between non-gaussianity and resonanse). Transac Jpn Soc Mechan Eng Series C 79(799):573 ((in Japanese))

    Article  Google Scholar 

  29. Belenky V, Weems K.M (2011) On the distribution of parametric roll., Proceedings of the 12th International Ship Stability Workshop, Washington D.C., USA pp. 205–212

  30. Mohamad MA, Sapsis TP (2016) Probabilistic response and rare events in Mathieu’s equation under correlated parametric excitation. Ocean Eng 120:289

    Article  Google Scholar 

  31. Maki A (2017) Estimation method of the capsizing probability in irregular beam seas using non-gaussian probability density function. J Mar Sci Technol 22:351

    Article  Google Scholar 

  32. Francescutto A, Naito S (2003) Large amplitude rolling in a realistic sea., Proceedings of the 8th International Conference on Stability of Ships and Ocean Vehicles, Madrid, Spain pp. 495–505

  33. Su Z, Falzarano JM (2011) Gaussian and non-gaussian cumulant neglect application to large amplitude rolling in random waves. Int Shipbuild Prog 58(2-3):97

    Google Scholar 

  34. Chai W, Naess A, Leira BJ, Bulian G (2016) Efficient monte carlo simulation and grim effective wave model for predicting the extreme response of a vessel rolling in random head seas. Ocean Eng 123:191

    Article  Google Scholar 

  35. Grim O (1961) Beitrag zu dem problem der sicherheit des schiffes in seegang. Schiff Hafen 6:490–497

    Google Scholar 

  36. Umeda N, Ariji M, Yamakoshi Y (1991) Assessment for probability of ship capsizing due to pure loss of stability in quartering seas (2nd report). J Kansai Soc Nav Archit Jpn 216:129

    Google Scholar 

  37. Maruyama G (1955) Continuous Markov processes and stochastic equations. Rend Circ Mat Palermo 4(1):48

    Article  MathSciNet  MATH  Google Scholar 

  38. Shuku M, Shimada H, Fujii H, Toyoda S, Ikegami K, Ando H (1979) The motions of moored floating storage barge in shallow water (non-linear mathematical model and numerical simulation) (in japanese). J Soc Nav Archit Jpn 1979(146):245

    Article  Google Scholar 

  39. Umeda N, Yamakoshi Y (1992) Probability of ship capsizing due to pure loss of stability in quartering seas. Nav Archit Ocean Eng 30:73

    Google Scholar 

  40. Hamamoto M, Kim Y, Uwatoko K (1991) Study on ship motions and capsizing in following seas (final report). J Soc Nav Archit Jpn 1991(170):173

    Article  Google Scholar 

  41. Sobczyk K (1991) Stochastic differential equations with applications to physics and engineering. Mathematics and its applications. Springer Netherlands

    MATH  Google Scholar 

  42. Sun JQ, Hsu CS (1987) Cumulant-neglect closure method for nonlinear systems under random excitations. J Appl Mech 54(3):649

    Article  MATH  Google Scholar 

  43. Sun JQ, Hsu CS (1989) Cumulant-neglect closure method for asymmetric non-linear systems driven by gaussian white noise. J Sound Vib 135(2):338

    Article  MATH  Google Scholar 

  44. Wojtkiewicz SF, Spencer BF, Bergman LA (1996) On the cumulant-neglect closure method in stochastic dynamics. Int J Non-Linear Mech 31(5):657

    Article  MATH  Google Scholar 

  45. Hashimoto H, Umeda N (2010) A study on quantitative prediction of parametric roll in regular waves., Proceedings of the 11th International Ship Stability Workshop, Wageningen, The Netherlands pp. 295–301

  46. Kawahara Y, Maekawa K, Ikeda Y (2012) A simple prediction formula of roll damping of conventional cargo ships on the basis of ikeda’s method and its limitation. J Shipp Ocean Eng 2(4):201

    Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research from the Japan Society for Promotion of Science (JSPS KAKENHI Grant Number 19H02360) and by Support for Pioneering Research Initiated by the Next Generation from Japan Science and Technology Agency (JST SPRING, Grant Number JPMJSP2138), as well as the collaborative research program / financial support from the Japan Society of Naval Architects and Ocean Engineers. This study was supported by the Fundamental Research Developing Association for Shipbuilding and Offshore (REDAS), managed by the Shipbuilders’ Association of Japan from April 2020 to March 2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuuki Maruyama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 96 kb)

Appendices

Appendix 1

In this study, we use the ARMA filter. Here, the 2nd, 4th, and 6th-order ARMA filter are compared. First, the ordinary differential equations of the 2nd and 4th-order ARMA filter are expressed as follows:

$$\begin{aligned} \left\{ \begin{array}{l} \displaystyle \dfrac{\mathrm {d} x_{1}^{}}{\mathrm {d} t} = x_{2}^{} - \alpha _{1}^{} x_{1}^{} + k \sqrt{\pi } \dfrac{\mathrm {d} W(t)}{\mathrm {d} t} \\ \\ \displaystyle \dfrac{\mathrm {d} x_{2}^{}}{\mathrm {d} t} = - \alpha _{2}^{} x_{1}^{} \\ \end{array}\right. \end{aligned}$$
(29)
$$\begin{aligned} \left\{ \begin{array}{l} \displaystyle \frac{\mathrm {d} x_{1}}{\mathrm {d} t}=x_{2}-\alpha _{1} x_{1} \\ \\ \displaystyle \frac{\mathrm {d} x_{2}}{\mathrm {d} t}=x_{3}-\alpha _{2} x_{1} + k\sqrt{\pi } \dfrac{\mathrm {d} W(t)}{\mathrm {d} t} \\ \\ \displaystyle \frac{\mathrm {d} x_{3}}{\mathrm {d} t}=x_{4}-\alpha _{3} x_{1} \\ \\ \displaystyle \frac{\mathrm {d} x_{4}}{\mathrm {d} t}=-\alpha _{4} x_{1} \end{array}\right. \,\,. \end{aligned}$$
(30)

Here, W denotes the standard Wiener process, and the notation for differentiation is represented by Lagrange’s notation. As discussed later, the coefficients \(\alpha _{i}^{} (i = 1, \cdots , 4 )\) and k are determined such that they agree with the effective wave spectrum. From Eqs. 29 and 30, the spectra of the 2nd and 4th-order ARMA process can be obtained as:

$$\begin{aligned} \displaystyle S_{2}(\omega ) = \dfrac{k^{2}\omega ^{2}}{ (\omega ^{2} - \alpha _{2}^{})^{2} + \alpha _{1}^{2}\omega ^{2} } \end{aligned}$$
(31)
$$\begin{aligned} \displaystyle S_{4}(\omega ) = \dfrac{k^{2}\omega ^{4}}{\left( \omega ^{4} - \alpha _{2}^{}\omega ^{2} + \alpha _{4}^{} \right) ^{2} + \left( \alpha _{1}^{}\omega ^{3} - \alpha _{3}^{}\omega ^{} \right) ^{2}} \,\,. \end{aligned}$$
(32)

Next, the coefficients \(\alpha _{i}^{}\) and k of Eqs. 10, 31, and 32 are determined by fitting the effective wave spectrum. Here, the stability criterion of their corresponding system explained in section2 is used. In Fig. 17, the effective wave spectrum, 2nd, 4th, and 6th-order ARMA spectra are plotted. From this figure, we can see that the 6th-order ARMA filter is better than the 2nd and 4th-order ARMA filters. Therefore, the 6th-order ARMA filter is used in this study.

Fig. 17
figure 17

Comparison among effective wave spectrum \(S_{\mathrm {eff}}^{}\), 2nd-order ARMA spectrum \(S_{2}\), 4th-order ARMA spectrum \(S_{4}\), and 6th-order ARMA spectrum \(S_{6}\). Here, the sea condition is \(T_{01}=9.99[s]\) and \(H_{1/3}=5.0[m]\)

Appendix 2

From Eq. 24, the following eight first-order moment equations are obtained:

$$\begin{aligned} \begin{array}{l} \displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\mathbb {E}\left[ X_1^{}\right] = \mathbb {E}\left[ X_2^{}\right] \\ \\ \displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\mathbb {E}\left[ X_2^{}\right] = - \mathbb {E}\left[ G(X_1^{},X_2^{})\right] - \mathbb {E}\left[ F(X_3^{})X_1^{}\right] \\ \\ \displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\mathbb {E}\left[ X_i^{}\right] = \mathbb {E}\left[ X_{i+1}^{}\right] - \alpha _{i-2}^{} \mathbb {E}\left[ X_3^{}\right] \,\,\,(i=3\cdots 7) \\ \\ \displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\mathbb {E}\left[ X_8^{}\right] = - \alpha _6^{} \mathbb {E}\left[ X_3^{}\right] \end{array} \end{aligned}$$
(33)

Moreover, thirty-six second-order moment equations are obtained as:

$$\begin{aligned} \begin{array}{l} \displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\mathbb {E}\left[ X_1^2\right] = 2 \mathbb {E}\left[ X_1^{}X_2^{}\right] \\ \\ \displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\mathbb {E}\left[ X_1^{}X_2^{}\right] = \mathbb {E}\left[ X_2^2\right] - \mathbb {E}\left[ G(X_1^{},X_2^{})X_1^{}\right] - \mathbb {E}\left[ F(X_3^{})X_1^2\right] \\ \\ \displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\mathbb {E}\left[ X_1^{}X_i^{}\right] = \mathbb {E}\left[ X_2^{}X_i^{}\right] + \mathbb {E}\left[ X_1^{}X_{i+1}^{}\right] \\ \displaystyle \quad \quad \quad \quad \quad \quad - \alpha _{i-2}^{} \mathbb {E}\left[ X_1^{}X_3^{}\right] \,\,\,(i=3\cdots 7) \\ \\ \displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\mathbb {E}\left[ X_1^{}X_8^{}\right] = \mathbb {E}\left[ X_2^{}X_8^{}\right] - \alpha _6^{} \mathbb {E}\left[ X_1^{}X_3^{}\right] \\ \\ \displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\mathbb {E}\left[ X_2^2\right] = - 2 \mathbb {E}\left[ G(X_1^{},X_2^{})X_2^{}\right] - 2 \mathbb {E}\left[ F(X_3^{})X_1^{}X_2^{}\right] \end{array} \end{aligned}$$
$$\begin{aligned} \begin{array}{l} \displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\mathbb {E}\left[ X_2^{}X_i^{}\right] = - \mathbb {E}\left[ G(X_1^{},X_2^{})X_i^{}\right] - \mathbb {E}\left[ F(X_3^{})X_1^{}X_i^{}\right] \\ \displaystyle \quad \quad \quad \quad \quad \quad + \mathbb {E}\left[ X_2^{}X_{i+1}^{}\right] - \alpha _{i-2}^{} \mathbb {E}\left[ X_2^{}X_3^{}\right] \,\,\,(i=3\cdots 7) \\ \\ \displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\mathbb {E}\left[ X_2^{}X_8^{}\right] = - \mathbb {E}\left[ G(X_1^{},X_2^{})X_8^{}\right] - \mathbb {E}\left[ F(X_3^{})X_1^{}X_8^{}\right] \\ \displaystyle \quad \quad \quad \quad \quad \quad - \alpha _6^{} \mathbb {E}\left[ X_2^{}X_3^{}\right] \\ \\ \displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\mathbb {E}\left[ X_3^2\right] = 2\mathbb {E}\left[ X_3^{}X_4^{}\right] - 2\alpha _1^{}\mathbb {E}\left[ X_3^2\right] \\ \\ \displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\mathbb {E}\left[ X_3^{}X_{i}^{}\right] = \mathbb {E}\left[ X_4^{}X_{i}^{}\right] - \alpha _1^{}\mathbb {E}\left[ X_3^{}X_{i}^{}\right] \\ \displaystyle \quad \quad \quad \quad \quad \quad + \mathbb {E}\left[ X_3^{}X_{i+1}^{}\right] - \alpha _{i-2}^{}\mathbb {E}\left[ X_3^2\right] \,\,\,(i=4\cdots 7) \\ \\ \displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\mathbb {E}\left[ X_3^{}X_8^{}\right] = \mathbb {E}\left[ X_4^{}X_8^{}\right] - \alpha _1^{}\mathbb {E}\left[ X_3^{}X_8^{}\right] - \alpha _6^{}\mathbb {E}\left[ X_3^2\right] \\ \\ \displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\mathbb {E}\left[ X_4^2\right] = 2\mathbb {E}\left[ X_4^{}X_5^{}\right] - 2\alpha _2^{}\mathbb {E}\left[ X_3^{}X_4^{}\right] \\ \\ \displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\mathbb {E}\left[ X_4^{}X_i^{}\right] = \mathbb {E}\left[ X_5^{}X_i^{}\right] - \alpha _2^{}\mathbb {E}\left[ X_3^{}X_i^{}\right] \\ \displaystyle \quad \quad \quad \quad \quad \quad + \mathbb {E}\left[ X_4^{}X_{i+1}^{}\right] - \alpha _{i-2}^{}\mathbb {E}\left[ X_3^{}X_4^{}\right] \,\,\,(i=5\cdots 7) \\ \\ \displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\mathbb {E}\left[ X_4^{}X_8^{}\right] = \mathbb {E}\left[ X_5^{}X_8^{}\right] - \alpha _2^{}\mathbb {E}\left[ X_3^{}X_8^{}\right] - \alpha _6^{}\mathbb {E}\left[ X_3^{}X_4^{}\right] \\ \\ \displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\mathbb {E}\left[ X_5^2\right] = 2\mathbb {E}\left[ X_5^{}X_6^{}\right] - 2\alpha _3^{}\mathbb {E}\left[ X_3^{}X_5^{}\right] + \pi k_{}^{2} \\ \\ \displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\mathbb {E}\left[ X_5^{}X_i^{}\right] = \mathbb {E}\left[ X_6^{}X_i^{}\right] - \alpha _3^{}\mathbb {E}\left[ X_3^{}X_i^{}\right] \\ \displaystyle \quad \quad \quad \quad \quad \quad + \mathbb {E}\left[ X_5^{}X_{i+1}^{}\right] - \alpha _{i-2}^{}\mathbb {E}\left[ X_3^{}X_5^{}\right] \,\,\,(i=6,7) \\ \\ \displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\mathbb {E}\left[ X_5^{}X_8^{}\right] = \mathbb {E}\left[ X_6^{}X_8^{}\right] - \alpha _3^{}\mathbb {E}\left[ X_3^{}X_8^{}\right] - \alpha _6^{}\mathbb {E}\left[ X_3^{}X_5^{}\right] \\ \\ \displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\mathbb {E}\left[ X_6^2\right] = 2\mathbb {E}\left[ X_6^{}X_7^{}\right] - 2\alpha _4^{}\mathbb {E}\left[ X_3^{}X_6^{}\right] \\ \\ \displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\mathbb {E}\left[ X_6^{}X_7^{}\right] = \mathbb {E}\left[ X_7^2\right] - \alpha _4^{}\mathbb {E}\left[ X_3^{}X_7^{}\right] \\ \displaystyle \quad \quad \quad \quad \quad \quad + \mathbb {E}\left[ X_6^{}X_8^{}\right] - \alpha _5^{}\mathbb {E}\left[ X_3^{}X_6^{}\right] \\ \\ \displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\mathbb {E}\left[ X_6^{}X_8^{}\right] = \mathbb {E}\left[ X_7^{}X_8^{}\right] - \alpha _4^{}\mathbb {E}\left[ X_3^{}X_8^{}\right] - \alpha _6^{}\mathbb {E}\left[ X_3^{}X_6^{}\right] \\ \\ \displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\mathbb {E}\left[ X_7^2\right] = 2\mathbb {E}\left[ X_7^{}X_8^{}\right] - 2\alpha _5^{}\mathbb {E}\left[ X_3^{}X_7^{}\right] \\ \\ \displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\mathbb {E}\left[ X_7^{}X_8^{}\right] = \mathbb {E}\left[ X_8^2\right] - \alpha _5^{}\mathbb {E}\left[ X_3^{}X_8^{}\right] - \alpha _6^{}\mathbb {E}\left[ X_3^{}X_7^{}\right] \\ \\ \displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\mathbb {E}\left[ X_8^2\right] = - 2\alpha _6^{}\mathbb {E}\left[ X_3^{}X_8^{}\right] \end{array} \end{aligned}$$
(34)

Appendix 3

The detailed formula about the relations between moments and cumulants can be shown in the electronic supplementary material (ESM).

Appendix 4

In the case of using the second-order cumulant neglect closure, the stationary solutions of roll angle \(X_{1}^{}\) and roll velocity \(X_{2}^{}\) are obtained. Here, these solutions are oscillating, as shown in Fig. 11. We consider the question whether the second-order cumulant method can sufficiently reflect the nonlinearity. Therefore, we examine the effect of considering higher-order cumulants. Thus, the third-order cumulant neglect closure is used as well. Thereby, one hundred twenty third-order moment equations, derived from Eq. 24, are additionally needed. In other words, one hundred sixty-four moment equations are used in the corresponding numerical calculation. Furthermore, it is necessary that 4th and higher-order moments are represented by first, second, and third-order moments. These relations can be derived as shown in Appendix 3.

Figure 18 shows the results when solving these moment equations numerically. Compared with the result of the second-order cumulant neglect closure in Figs. 10 and 11, it is clear that the steady state solutions are not oscillating. Furthermore, the moment values in the third-order cumulant neglect closure are closer to the moment values obtained from the numerical result of the SDE than the second-order cumulant neglect closure results, as shown in Table 7. We can therefore conclude that the result can reflect nonlinearity and be close to the actual value using higher-order cumulants and moments.

Table 7 Moment values obtained by solving the ordinary differential equations of moment equation with third-order cumulant neglect closure method
Fig. 18
figure 18

Second order moment of \(X_{1}^{} \, \text {and} \, X_{2}^{}\) obtained by solving the ordinary differential equations of moment equation with third-order cumulant neglect closure method

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maruyama, Y., Maki, A., Dostal, L. et al. Application of linear filter and moment equation for parametric rolling in irregular longitudinal waves. J Mar Sci Technol 27, 1252–1267 (2022). https://doi.org/10.1007/s00773-022-00903-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-022-00903-8

Keywords

Navigation