Skip to main content
Log in

Numerical study on vortex shedding of cycloidal propellers

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

Understanding the complex flow fields behind the propeller and the structure of vortex shedding of cycloidal propellers are essential to analyzing the instantaneous forces on the blades and the overall hydrodynamic performance. In this paper, numerical simulation is performed to investigate the hydrodynamics and vortex shedding of cycloidal blades. The numerical results agree well with experimental results. The flow field around the propeller was investigated and a three-dimensional analysis was performed for flow fields behind the propeller. The complex flow fields and vortices around the blades were then examined. Finally, parametric analysis shows that eccentricity, advance coefficient, and position of rotation center have significant effects on vortex formation and shedding, clearly affecting the pulsation of the forces on the blade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Bai C, Wu Z (2014) Generalized kutta–joukowski theorem for multi-vortex and multi-airfoil flow (a lumped vortex model). Chin J Aeronaut 27:34–39

    Article  Google Scholar 

  2. C., A., Coclici, W., L., & Wendland. (1999) On the treatment of the kutta-joukowski condition in transonic flow computations. ZAMM J Appl Math Mech 79(8):507–534

    Article  MathSciNet  Google Scholar 

  3. Lighthill MJ (1963) Introduction boundary layer theory. Laminar Boundary Layers.

  4. Karmán THV (1912) Über den mechanismus des wiederstandes, den ein bewegter korper in einer flüssigkeit erfahrt.

  5. John V (2004) Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder. Int J Numer Meth Fluids 44(7):777–788

    Article  Google Scholar 

  6. Bayraktar E, Mierka O, Turek S (2012) Benchmark computations of 3d laminar flow around a cylinder with cfx, openfoam and featflow. Int J Comput Sci Eng 7(3):253–266

    Google Scholar 

  7. Lin CL, Pepper DW, Lee SC (2015) Numerical methods for separated flow solutions around a circular cylinder. Aiaa J 1(7):91–100

    Google Scholar 

  8. Thompson MC, Radi A, Rao A, Sheridan J, Hourigan K (2014) Low-reynolds-number wakes of elliptical cylinders: from the circular cylinder to the normal flat plate. J Fluid Mech 751:570–600

    Article  Google Scholar 

  9. Heil M, Rosso J, Hazel AL, Brøns M (2017) Topological fluid mechanics of the formation of the kármán-vortex street. J Fluid Mech 812:199–221

    Article  Google Scholar 

  10. AIAA (2008) Computational study of unsteady flows around dragonfly and smooth airfoils at low reynolds numbers—46th aiaa aerospace sciences meeting and exhibit (aiaa).

  11. Wang A, Blackburn H (2018) Examination of the details of 2D vorticity generation around the airfoil during starting and stopping phases. 21st Australasian Fluid Mechanics Conference.

  12. Devenport WJ, Rife MC, Liapis SI, Follin GJ (1996) The structure and development of a wing-tip vortex. J Fluid Mech 312(1):67

    Article  MathSciNet  Google Scholar 

  13. Ghias R, Mittal R, Dong H, Lund T (2005) Study of tip-vortex formation using large-eddy simulation. In 43rd AIAA aerospace sciences meeting and exhibit (p. 1280).

  14. Zhang LX, Zhang N, Peng XX, Wang BL, Shao XM (2015) A review of studies of mechanism and prediction of tip vortex cavitation inception. J Hydrodyn 27(4):488–495

    Article  Google Scholar 

  15. Oshima Y, Natsume A (1980) Flow field around an oscillating foil. In: Merzkirch W (ed) Flow visualization II. Proc. Second Int. Symp. on Flow Visualization, Bochum, Germany, Hemisphere, pp 295–299

    Google Scholar 

  16. Delaurier JD, Harris JM (1982) Experimental study of oscillating-wing propulsion. J Aircr 19(5):368–373

    Article  Google Scholar 

  17. Jones K, Platzer M, Jones K, Platzer M (1997) Numerical computation of flapping-wing propulsion and power extraction. In 35th Aerospace Sciences Meeting and Exhibit (p. 826).

  18. Katz J, Plotkin A (2001) Low-speed aerodynamics, vol 13. Cambridge University Press, Cambridge

    Book  Google Scholar 

  19. Schnipper T, Andersen A, Bohr T (2009) Vortex wakes of a flapping foil. J Fluid Mech 633:411

    Article  Google Scholar 

  20. Dian-Ming Z (1982) Theoretical computational method for cycloidal propellers. Journal of Harbin Engineering University.

  21. Jürgens D, Palm M, Singer S, Urban K (2007) Numerical optimization of the Voith-Schneider® Propeller. ZAMM-J Appl Math Mech 87(10):698–710

    Article  Google Scholar 

  22. Halder A, Walther C, Benedict M (2018) Hydrodynamic modeling and experimental validation of a cycloidal propeller. Ocean Eng 154(APR.15):94–105

    Article  Google Scholar 

  23. Prabhu JJ, Nagarajan V, Sunny MR, Sha OP (2017) On the fluid structure interaction of a marine cycloidal propeller. Appl Ocean Res 64:105–127

    Article  Google Scholar 

  24. Siegel S, Jürgen S, Cohen K, Mclaughlin T (2007) A cycloidal propeller using dynamic lift. Aiaa Fluid Dyn Conf Exhibit. https://doi.org/10.2514/6.2007-4232

    Article  Google Scholar 

  25. Palm M, Jürgens D, Bendl D (2011). Numerical and experimental study on ventilation for azimuth thrusters and cycloidal propellers. In Proc. 2nd Int Symp Marine Propulsors smp (Vol. 11).

  26. Hu Y, Zhang H, & Wang G (2016) Two dimensional and three-dimensional numerical simulation of cycloidal propellers in hovering status. In 54th AIAA Aerospace Sciences Meeting (p. 1350).

  27. Brockett T (1991) Hydrodynamic analysis of cycloidal propulsors.

  28. Wilcox DC (1988) Reassessment of the scale-determining equation for advanced turbulence models. AIAA J 26(11):1299–1310

    Article  MathSciNet  Google Scholar 

  29. Huang PG, Bradshaw P, Coakley TJ (1992) Assessment of closure coefficients for compressible-flow turbulence models

  30. Menter FR, Kuntz M, Langtry R (2003) Ten years of industrial experience with the SST turbulence model. Turbulence Heat Mass Transfer 4(1):625–632

    Google Scholar 

  31. Nakonechny, B. V. (1974). Design of a 9-Inch Cycloidal Propeller Model Unit and Some Experimental Results (No. NSRDC-3150). Naval Ship Research and Development Center Bethesda MD.

  32. Holmén V (2012). Methods for vortex identification. Master’s Theses in Mathematical Sciences.

  33. Kolář V (2007) Vortex identification: new requirements and limitations. Int J Heat Fluid Flow 28(4):638–652

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyu Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Li, T., Wang, J. et al. Numerical study on vortex shedding of cycloidal propellers. J Mar Sci Technol 26, 1217–1236 (2021). https://doi.org/10.1007/s00773-021-00808-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-021-00808-y

Keywords

Navigation