Skip to main content

Advertisement

Log in

Exploiting ocean energy for improved AUV persistent presence: path planning based on spatiotemporal current forecasts

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

This paper presents a path planner which exploits ocean energy to enable long-range operation of autonomous underwater vehicles (AUVs) in turbulent, cluttered, time varying and uncertain environments. The proposed strategy employs current field forecasts within an evolutionary path planner to find an optimal trajectory for an AUV, with maximum energy utilization of the current motion and minimal time usage to reach its destination. The proposed path planner is simulated to generate an optimal trajectory for an AUV navigating through a spatiotemporal variable ocean environment in the presence of irregularly shaped terrains as well as obstacles whose position coordinates are uncertain. Simulation results show that with integration of an ocean current forecast model, the proposed methodology is able to obtain a more optimized trajectory than one relying on a static current map. Monte Carlo simulations were run to testify the performance of the proposed path planner, and analyse the effects of currents prediction uncertainties on the time optimal path. The results highlight the benefits of including ocean forecasts in the planning, and demonstrate the superiority of the proposed scheme based on a forecasted ocean current map compared with a configured quasi-stationary scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lane DM, Maurelli F, Kormushev P, Carreras M, Fox M, Kyriakopoulos K (2012) Persistent autonomy: the challenges of the PANDORA project. IFAC proceedings volumes (IFAC-PapersOnline), pp 268–273

  2. Perera LP, Carvalho JP, Guedes Soares C (2012) Intelligent ocean navigation and fuzzy-Bayesian decision/action formulation. IEEE J Ocean Eng 37(2):204–219

    Article  Google Scholar 

  3. Isern-González J, Hernández-Sosa D, Fernández-Perdomo E, Cabrera-Gámez J, Dominguez-Brito AC, Prieto-Maranon V (2011) Path planning for underwater gliders using iterative optimization. 2011 IEEE international conference on robotics and automation (ICRA) City, pp 1538–1543

  4. Kim K, Ura T (2011) Towards a new strategy for AUV navigation in sea currents: a quasi-optimal approach. Underwater technology (UT), 2011 IEEE symposium on and 2011 workshop on scientific use of submarine cables and related technologies (SSC), City, pp 1–10

  5. Rao D, Williams SB (2009) Large-scale path planning for underwater gliders in ocean currents. Australasian conference on robotics and automation (ACRA), Sydney

  6. Das J, Py F, Maughan T, O’Reilly T, Messié M, Ryan J, Rajan K, Sukhatme GS (2014) Simultaneous tracking and sampling of dynamic oceanographic features with autonomous underwater vehicles and lagrangian drifters. Springer Tracts Adv Robot 79:541–555

    Article  Google Scholar 

  7. Smith RN, Pereira A, Chao Y, Li PP, Caron DA, Jones BH, Sukhatme GS (2010) Autonomous underwater vehicle trajectory design coupled with predictive ocean models: a case study. Proceedings—IEEE international conference on robotics and automation, City, pp 4770–4777

  8. Lolla T, Haley PJ Jr, Lermusiaux PFJ (2014) Time-optimal path planning in dynamic flows using level set equations: realistic applications. Ocean Dyn 64(10):1399–1417

    Article  Google Scholar 

  9. Lolla T, Lermusiaux PFJ, Ueckermann MP, Haley PJ Jr (2014) Time-optimal path planning in dynamic flows using level set equations: theory and schemes. Ocean Dyn 64(10):1373–1397

    Article  Google Scholar 

  10. Smith RN, Chao Y, Li PP, Caron DA, Jones BH, Sukhatme GS (2010) Planning and implementing trajectories for autonomous underwater vehicles to track evolving ocean processes based on predictions from a regional ocean model. Int J Robot Res 29(12):1475–1497

    Article  Google Scholar 

  11. Galceran E, Carreras M (2013) A survey on coverage path planning for robotics. Robot Autonom Syst 61(12):1258–1276

    Article  Google Scholar 

  12. Witt J, Dunbabin M (2008) Go with the flow: optimal AUV path planning in coastal environments. Proceedings of the 2008 Australasian Conference on Robotics and Automation, ACRA 2008, City

  13. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271

    Article  MathSciNet  Google Scholar 

  14. Carroll KP, McClaran SR, Nelson EL, Barnett DM, Friesen DK, William GN (1992) AUV path planning: an A* approach to path planning with consideration of variable vehicle speeds and multiple, overlapping, time-dependent exclusion zones. Symposium on Autonomous Underwater Vehicle Technology AUV ‘92, 1992, City, pp 79–84

  15. Ferguson D, Stentz A (2006) Using interpolation to improve path planning the field D* algorithm. J Field Robot 23(2):79–101

    Article  Google Scholar 

  16. Pêtrès C, Pailhas Y, Patrón P, Petillot Y, Evans J, Lane D (2007) Path planning for autonomous underwater vehicles. IEEE Trans Robot 23(2):331–341

    Article  Google Scholar 

  17. Pêtrès C, Pailhas Y, Petillot Y, Lane D (2005) Underwater path planing using fast marching algorithms. Proc. IEEE/MTS Oceans 2005, City, pp 814–819

  18. Sethian JA (1996) A fast marching level set method for monotonically advancing fronts. Proc Natl Acad Sci USA 93(4):1591–1595

    Article  MathSciNet  Google Scholar 

  19. Sethian JA (2001) Evolution, implementation, and application of level set and fast marching methods for advancing fronts. J Comput Phys 169(2):503–555

    Article  MathSciNet  Google Scholar 

  20. Lolla T, Ueckermann M, Yigit K, Haley P Jr, Lermusiaux PF (2012) Path planning in time dependent flow fields using level set methods. 2012 IEEE international conference on robotics and automation (ICRA), City, pp 166–173

  21. Warren CW (1990) A technique for autonomous underwater vehicle route planning. Proceedings of the symposium on autonomous underwater vehicle technology AUV ‘90, 1990, City, pp 201–205

  22. Kruger D, Stolkin R, Blum A, Briganti J (2007) Optimal AUV path planning for extended missions in complex, fast-flowing estuarine environments. Proc. IEEE international conference on robotics and automation (ICRA) 2007, City, pp 4265–4270

  23. Kuffner JJ, LaValle SM (2000) RRT-connect: an efficient approach to single-query path planning. Proceedings. ICRA ‘00. IEEE international conference on robotics and automation, vol 1002, 2000, City, pp 995–1001

  24. Ferguson D, Kalra N, Stentz A (2006) Replanning with RRTs. Proceedings 2006 IEEE international conference on robotics and automation, 2006. ICRA 2006, City, pp 1243–1248

  25. Zucker M, Kuffner J, Branicky M (2007) Multipartite RRTs for rapid replanning in dynamic environments. 2007 IEEE international conference on robotics and automation, City, pp 1603–1609

  26. Shkolnik A, Tedrake R (2009) Path planning in 1000+ dimensions using a task-space Voronoi bias. Robotics and Automation, 2009. ICRA’09. IEEE international conference on, City, pp 2061–2067

  27. Alvarez A, Caiti A, Onken R (2004) Evolutionary path planning for autonomous underwater vehicles in a variable ocean. IEEE J Ocean Eng 29(2):418–429

    Article  Google Scholar 

  28. Nikolos IK, Valavanis KP, Tsourveloudis NC, Kostaras AN (2003) Evolutionary algorithm based offline/online path planner for UAV navigation. IEEE Trans Syst Man Cybern B Cybern 33(6):898–912

    Article  Google Scholar 

  29. Besada-Portas E, De La Torre L, Moreno A, Risco-Martín JL (2013) On the performance comparison of multi-objective evolutionary UAV path planners. Inf Sci 238:111–125

    Article  Google Scholar 

  30. Roberge V, Tarbouchi M, Labonte G (2013) Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning. IEEE Trans Industr Inf 9(1):132–141

    Article  Google Scholar 

  31. Mohamed AW (2017) Solving large-scale global optimization problems using enhanced adaptive differential evolution algorithm. Complex Intell Syst 3(4):205–231

    Article  Google Scholar 

  32. Zeng Z, Sammut K, Lian L, He F, Lammas A, Tang Y (2016) A comparison of optimization techniques for AUV path planning in environments with ocean currents. Robot Autonom Syst 82:61–72

    Article  Google Scholar 

  33. Fu Y, Ding M, Zhou C (2012) Phase angle-encoded and quantum-behaved particle swarm optimization applied to three-dimensional route planning for UAV. IEEE Trans Syst Man Cybern A Syst Hum 42(2):511–526

    Article  Google Scholar 

  34. Pereira AA, Binney J, Hollinger GA, Sukhatme GS (2013) Risk-aware path planning for autonomous underwater vehicles using predictive ocean models. J Field Robot 30(5):741–762

    Article  Google Scholar 

  35. Zeng Z, Lammas A, Sammut K, He F, Tang YH (2014) Shell space decomposition based path planning for AUVs operating in a variable environment. Ocean Eng 91:181–195

    Article  Google Scholar 

  36. Lammas AK, Sammut K, He F (2007) A 6 DoF navigation algorithm for autonomous underwater vehicles. In: OCEANS 2007 - Europe. IEEE, Aberdeen, UK, pp 1–6. https://doi.org/10.1109/OCEANSE.2007.4302417

    Chapter  Google Scholar 

  37. Zeng Z, Sammut K, He F, Lammas A (2013) Efficient path evaluation for AUVs using adaptive B-spline approximation. In: 2012 Oceans. IEEE, Hampton Roads, VA, 1–8. https://doi.org/10.1109/OCEANS.2012.6405066

    Chapter  Google Scholar 

  38. Craighead J, Murphy R, Burke J, Goldiez B (2007) A survey of commercial and open source unmanned vehicle simulators. 2007 IEEE international conference on robotics and automation, City, pp 852–857

  39. Nakamura M, Asakawa K, Hyakudome T, Kishima S, Matsuoka H, Minami T (2013) Hydrodynamic coefficients and motion simulations of underwater glider for virtual mooring. IEEE J Ocean Eng 38(3):581–597

    Article  Google Scholar 

  40. Prestero T (2001) Development of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle, vol 451. OCEANS, 2001. MTS/IEEE conference and exhibition, City, pp 450–455

  41. Kokegei M, He F, Sammut K (2008) Fully coupled 6 degrees-of-freedom control of autonomous underwater vehicles. In: Oceans 2008. IEEE, Quebec City, QC, pp 1–7. https://doi.org/10.1109/OCEANS.2008.5152090

    Chapter  Google Scholar 

  42. Liu C, Zou ZJ, Yin JC (2014) Path following and stabilization of underactuated surface vessels based on adaptive hierarchical sliding mode. Int J Innovative Comput Inf Control 10(3):909–918

    Google Scholar 

  43. Zeng Z, Lammas A, Sammut K, He F (2012) Optimal path planning based on annular space decomposition for AUVs operating in a variable environment. IEEE/OES autonomous underwater vehicles (AUV), 2012. Southampton

  44. Hollinger GA, Pereira AA, Sukhatme GS (2013) Learning uncertainty models for reliable operation of autonomous underwater vehicles. 2013 IEEE international conference on robotics and automation (ICRA), City, pp 5593–5599

  45. Gonzalez JP, Stentz A (2005) Planning with uncertainty in position an optimal and efficient planner. 2005 IEEE/RSJ international conference on intelligent robots and systems, 2005. (IROS 2005) City, pp 2435–2442

  46. Sun J, Wu X, Palade V, Fang W, Lai CH, Xu W (2012) Convergence analysis and improvements of quantum-behaved particle swarm optimization. Inf Sci 193:81–103

    Article  MathSciNet  Google Scholar 

  47. Garau B, Alvarez A, Oliver G (2005) Path planning of autonomous underwater vehicles in current fields with complex spatial variability: an A* approach. In: Proceedings—IEEE international conference on robotics and automation. IEEE, Barcelona, Spain, pp 194–198. https://doi.org/10.1109/ROBOT.2005.1570118

    Chapter  Google Scholar 

  48. Zeng Z, Sammut K, Lammas A, He F, Tang Y (2014) Efficient path re-planning for AUVs operating in spatiotemporal currents. J Intell Robot Syst 79:1–19

    Google Scholar 

  49. Eichhorn M (2013) Optimal routing strategies for autonomous underwater vehicles in time-varying environment. Robot Autonom Syst 67:33–43

    Article  Google Scholar 

  50. Pereira AA, Binney J, Jones BH, Ragan M, Sukhatme GS (2011) Toward risk aware mission planning for autonomous underwater vehicles. IEEE/RSJ international conference on intelligent robots and systems, IROS 2011, San Francisco, CA, USA, 25–30 September 2011

  51. Dunbabin M, Marques L (2012) Robots for environmental monitoring: significant advancements and applications. IEEE Robot Autom Mag 19(1):24–39

    Article  Google Scholar 

  52. Lane DM, Maurelli F, Larkworthy T, Caldwell D, Salvi J, Fox M, Kyriakopoulos K (2015) PANDORA: persistent autonomy through learning, adaptation, observation and re-planning. IFAC proceedings volumes (IFAC-PapersOnline), City, pp 367–372

    Article  Google Scholar 

  53. Barnsley MF, Frame M (2012) The influence of benoît B. Mandelbrot on mathematics. Notices Am Math Soc 59(9):1208–1221

    Article  Google Scholar 

  54. Zhang F, Marani G, Smith RN, Choi HT (2015) Future trends in marine robotics. IEEE Robot Autom Mag 22(1):14–21 and 122

    Article  Google Scholar 

  55. Yazdani AM, Sammut K, Yakimenko OA, Lammas A, Tang Y, Mahmoud Zadeh S (2017) IDVD-based trajectory generator for autonomous underwater docking operations. Robot Autonom Syst 92:12–29

    Article  Google Scholar 

  56. Saigol ZA, Frost G, Tsiogkas N, Maurelli F, Lane DM, Bourque A, Nguyen B (2013) Facilitating cooperative AUV missions: experimental results with an acoustic knowledge-sharing framework. OCEANS 2013 MTS/IEEE—San Diego. An Ocean in Common, City

  57. MahmoudZadeh S, Yazdani AM, Sammut K, Powers DMW (2017) Online path planning for AUV rendezvous in dynamic cluttered undersea environment using evolutionary algorithms. Appl Soft Comput J 70:929–945

    Article  Google Scholar 

  58. Maurelli F, Saigol Z, Insaurralde CC, Petillot YR, Lane DM (2012) Marine world representation and acoustic communication: challenges for multi-robot collaboration. In: 2012 IEEE/OES autonomous underwater vehicles (AUV). IEEE, Southampton, UK, pp 1–6. https://doi.org/10.1109/AUV.2012.6380755

    Chapter  Google Scholar 

  59. Zeng Z, Sammut K, Lian L, Lammas A, He F, Tang Y (2017) Rendezvous path planning for multiple autonomous marine vehicles. IEEE J Ocean Eng 43: 640–664

    Article  Google Scholar 

  60. Prestero TTJ (2001) Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle. Dissertation, Massachusetts institute of technology, 2001

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China under Grant 41706108 and in part by the Shanghai Sailing Program under Grant 17YF1409600 and in part by the open project of Qingdao National Laboratory for Marine Science and Technology under Grant QNLM2016ORP0104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Zeng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

1.1 Kinematics and dynamics of the vehicle

As mentioned in Sect. 3.1, an AUV simulator (developed using Simulink) is used to test the trajectories generated by the proposed path planners that have been developed in Matlab. Kinematics and dynamics of the vehicle are described here in detail. The AUV is modelled as a free-moving body within a 6 degrees of freedom (6DOF) space as represented in Eqs. 1117 [60]. The states represent the translation and rotation coordinates of the vehicle \(\eta\), in the body frame reference. These states are represented in the North–East–Down (NED) frame (Eq. 13). The first- and second-order derivatives are also presented in Eqs. 11 and 12. The velocities, \({V_{\text{a}}}\), and accelerations, \({\dot {V_{\text{a}}}}\), are defined in the body frame. The velocity, components \(u\), \(v\), and \(w\) represent the surge, sway, and heave linear motions, respectively, while \(p\), \(q\), and \(r\), represent the roll, pitch, and yaw rotational rates, respectively:

$${\dot {V_{\text{a}}}}={\left[ {\begin{array}{*{20}{c}} {\dot {u}}&{\dot {v}}&{\dot {w}}&{\dot {p}}&{\dot {q}}&{\dot {r}} \end{array}} \right]^{\text{T}}},$$
(11)
$${V_{\text{a}}}={\left[ {\begin{array}{*{20}{c}} u&v&w&p&q&r \end{array}} \right]^{\text{T}}},$$
(12)
$$\dot {\eta }=J\left( \eta \right){V_{\text{a}}}.$$
(13)

1.1.1 Euler-based kinematics

Using a Euler representation (14), the relationship between the velocity, \({V_{\text{a}}}\), represented in the body frame, and the NED frame, \(\dot {\eta }\), is defined as \(J\left( \eta \right)\) in Eq. 15. The linear velocity transformation matrix \(R_{{\text{b}}}^{{\text{n}}}\left( \Theta \right)\) and the angular velocity transformation matrix \({T_\Theta }\left( \Theta \right)\) are defined in Eqs. 16 and 17, respectively. Where the integral of which is position in the NED frame, \(\eta\), is defined as North, \(x\), East, \(y\), Down, \(z\), and the Euler angles roll, \(\phi\), pitch, \(\theta\), and yaw, \(\psi\):

$$\eta ={\left[ {\begin{array}{*{20}{c}} x&y&z&\phi &\theta &\psi \end{array}} \right]^{\text{T}}},$$
(14)
$$\dot {\eta }=J\left( \eta \right){V_{\text{a}}} \Rightarrow \left[ {~\begin{array}{*{20}{c}} {{{\dot {p}}^n}} \\ {\dot {\Theta }} \end{array}} \right]=\left[ {\begin{array}{*{20}{c}} {R_{{\text{b}}}^{{\text{n}}}\left( \Theta \right)}&{{0_{3 \times 3}}} \\ {{0_{3 \times 3}}}&{{T_\Theta }\left( \Theta \right)} \end{array}~~~~\begin{array}{*{20}{c}} {v_{{\text{o}}}^{{\text{b}}}} \\ {\omega _{{{\text{nb}}}}^{{\text{b}}}} \end{array}} \right],$$
(15)
$$\begin{aligned} R_{{\text{b}}}^{{\text{n}}}\left( \varvec{\Theta} \right) & =\left[ {\begin{array}{*{20}{c}} {\cos \psi \cos \theta }&{ - \sin \psi \cos \phi +\cos \psi \sin \theta \sin \phi } \\ {\sin \psi \cos \theta }&{\cos \psi \cos \theta +\sin \phi \sin \theta \sin \psi } \\ { - \sin \theta }&{\cos \theta \sin \phi } \end{array}} \right. \\ & \quad \left. {\begin{array}{*{20}{c}} {\sin \psi \sin \phi +\cos \psi \sin \theta \cos \phi } \\ { - \cos \psi \sin \phi +\sin \theta \sin \psi \cos \phi } \\ {\cos \theta \cos \phi } \end{array}} \right], \\ \end{aligned}$$
(16)
$${T_\Theta }\left( \Theta \right)=\left[ {\begin{array}{*{20}{c}} 1&{\sin \phi \tan \theta }&{\cos \phi \tan \theta } \\ 0&{\cos \phi }&{ - \sin \phi } \\ 0&{\frac{{\sin \phi }}{{\cos \theta }}}&{\frac{{\cos \phi }}{{\cos \theta }}} \end{array}} \right].$$
(17)

1.1.2 Vehicle kinetics

This subsection presents the mathematical framework for describing the motion of a torpedo shaped AUV in a kinetic sense.

To summarize the equations presented in the generic sense:

$$M{\dot {V}_a}+{C_{{\text{RB}}}}\left( {{V_{\text{a}}}} \right){V_{\text{a}}}~+{C_{\text{A}}}\left( \mathcal{V} \right)\mathcal{V}+D\left( \mathcal{V} \right)\mathcal{V}+L\left( \mathcal{V} \right)\mathcal{V}+g\left( \eta \right)=Bu+w,$$
(18)
$${V_{\text{a}}}=\mathcal{V}+{V_{\text{c}}},\quad {V_{\text{c}}}=R_{{\text{b}}}^{{\text{n}}}{\left( \varvec{\Theta} \right)^{\text{T}}}{v_{{\text{cn}}}},$$
(19)

where, \({\dot {V}_{\text{a}}}\) is the vehicle acceleration vector, \({V_{\text{a}}}\) is the vehicle velocity vector, \(\mathcal{V}\) is the vehicle water-referenced velocity vector, \(\eta\) is the vehicle position vector, \({v_{{\text{cn}}}}\) is the water velocity vector NED frame, \(u\) is the control vector, \(M\) is the mass matrix, \({C_{{\text{RB}}}}\left( \nu \right)\) is the rigid body Coriolis force matrix, \({C_{\text{A}}}\left( {{\nu _{\text{r}}}} \right)\) is the added mass Coriolis force matrix, \(D\left( {{\nu _{\text{r}}}} \right)\) is the drag matrix, \(L\left( {{\nu _{\text{r}}}} \right)\) is the Lift matrix, \(g\left( \eta \right)\) is the Buoyancy and gravitational force vector, \(B\) is the actuation dynamic matrix, \(w\) is the vector of un-modelled disturbances.

1.2 Spatiotemporal ocean environment

As mentioned in Sect. 3.2.1, it is possible to generate these currents field using analytic equations. Here a procedure is described to generate realistic ocean currents synthetically.

The ocean environment \({V_c}=\left( {{u_c},{v_c}} \right)\) is estimated by:

$${V_{\text{c}}}=f\left( {{{\mathbb{R}}^{\text{o}}},r,\zeta } \right),$$
(20)
$${u_{\text{c}}}\left( {\mathbb{R}} \right)= - r\frac{{y - {y_0}}}{{2\pi {{\left( {{\mathbb{R}} - {{\mathbb{R}}^{\text{o}}}} \right)}^2}}}\left[ {1 - {e^{ - \left( {\frac{{{{\left( {{\mathbb{R}} - {{\mathbb{R}}^{\text{o}}}} \right)}^2}}}{{{\zeta ^2}}}} \right)}}} \right],$$
(21)
$${v_{\text{c}}}\left( {\mathbb{R}} \right)=r\frac{{x - {x_0}}}{{2\pi {{\left( {{\mathbb{R}} - {{\mathbb{R}}^{\text{o}}}} \right)}^2}}}\left[ {1 - {e^{ - \left( {\frac{{{{\left( {{\mathbb{R}} - {{\mathbb{R}}^{\text{o}}}} \right)}^2}}}{{{\zeta ^2}}}} \right)}}} \right],$$
(22)

where \({\mathbb{R}}=\left[ {\begin{array}{*{20}{c}} x \\ y \end{array}} \right]~\) represents the 2-D spatial domain, \({{\mathbb{R}}^{\text{o}}}=\left[ {\begin{array}{*{20}{c}} {{x_{\text{o}}}} \\ {{y_{\text{o}}}} \end{array}} \right]\) is the centre of the vortex and \(r\), \(\zeta\) are parameters that control the radius and strength of the vortex.

The continuous time varying ocean environment can be estimated by recursive application of Gaussian noise to the three parameters \({{\mathbb{R}}^{\text{o}}},\;r\) and \(\zeta\). The random walk dynamic equations of these parameters are therefore:

$${\mathbb{R}}_{i}^{{\text{o}}}=A{\mathbb{R}}_{{i - 1}}^{{\text{o}}}+BX_{{i - 1}}^{{{\mathbb{R}}x}}+CX_{{i - 1}}^{{{\mathbb{R}}y}},$$
(23)
$${r_i}=A{r_{i - 1}}+BX_{{i - 1}}^{r},$$
(24)
$${\zeta _i}=A{\zeta _{i - 1}}+BX_{{i - 1}}^{\zeta },$$
(25)

where \(X_{{i - 1}}^{{{\mathbb{R}}x}}\sim N\left( {0,{\sigma _{{\mathbb{R}}x}}} \right)\), \(X_{{i - 1}}^{{{\mathbb{R}}y}}\sim N\left( {0,{\sigma _{{\mathbb{R}}y}}} \right)\), \(X_{{i - 1}}^{r}\sim N\left( {0,{\sigma _r}} \right)\) and \(X_{{i - 1}}^{\zeta }\sim N\left( {0,{\sigma _\zeta }} \right)\) are Gaussian. The current field is changing at every \({\varvec{\Delta}_{{\varvec{t}}\_{\varvec{c}}}}\) value of time. The parameter metrics are given by:

$$A=\left[ {\begin{array}{*{20}{c}} 1&0 \\ 0&1 \end{array}} \right],\quad B=\left[ {\begin{array}{*{20}{c}} {{\Delta _{t\_c}}} \\ 0 \end{array}} \right],\quad C=\left[ {\begin{array}{*{20}{c}} 0 \\ {{\Delta _{t\_c}}} \end{array}} \right].$$
(26)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Z., Zhou, H. & Lian, L. Exploiting ocean energy for improved AUV persistent presence: path planning based on spatiotemporal current forecasts. J Mar Sci Technol 25, 26–47 (2020). https://doi.org/10.1007/s00773-019-00629-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-019-00629-0

Keywords

Navigation