Skip to main content
Log in

Tracking control of underwater vehicle subject to uncertainties using fuzzy inverse desired trajectory compensation technique

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

Computed-torque controller plus fuzzy inverse desired trajectory compensation technique based on robust adaptive fuzzy observer is proposed to control underwater vehicle subject to uncertainties. A fuzzy inverse desired trajectory compensator is developed as a nonlinear filter at input trajectory level outside the control loop to address the issue of unavailable normalizing factor. A robust adaptive state observer with loose constraint on the position of the uncertainty function is proposed to evaluate the unavailable states. Numerical simulation results of regulation performance demonstrate that the observer solves the problem of strict constraint conditions on position uncertainties. Comparisons of tracking performance between the proposed control method and computed-torque controller are performed. The results confirm that compensation at the input trajectory offers better position tracking performance and easier practical implementation than other fuzzy compensation techniques at joint torque level. The proposed control approach is simulated and its efficiency is validated through the simulation of an underwater vehicle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Khalid I, Arshad MR, Syafizal I (2014) A hybrid-driven underwater glider model, hydrodynamics estimation, and an analysis of the motion control. Ocean Eng 81:111–129

    Article  Google Scholar 

  2. Fossen TI (2002) Marine control systems: guidance, navigation and control of ships, rigs and underwater vehicles. Marine Cybernetics AS, Trondheim

    Google Scholar 

  3. Yuh J (2000) Design and control of autonomous underwater robots: a survey. Autonomous Robots 8:7–24

    Article  Google Scholar 

  4. Zhang MJ, Chu ZZ (2012) Adaptive sliding mode control based on local recurrent neural networks for underwater robot. Ocean Eng 45:56–62

    Article  Google Scholar 

  5. Miao BB, Li TS, Luo WL (2013) A DSC and MLP based robust adaptive NN tracking control for underwater vehicle. Neurocomputing 111:184–189

    Article  Google Scholar 

  6. Fang MC, Wang SM, Wu MC, Lin YH (2015) Applying the self-tuning fuzzy control with the image detection technique on the obstacle-avoidance for autonomous underwater vehicles. Ocean Eng 93:11–24

    Article  Google Scholar 

  7. Behdad G, Saeed RN (2015) Nonlinear suboptimal control of fully coupled non-affine six-DOF autonomous underwater vehicle using the state-dependent Riccati equation. Ocean Eng 96:248–257

    Article  Google Scholar 

  8. Vinoth V, Singh Y, Santhakumar M (2014) Indirect disturbance compensation control of a planar parallel (2-PRP and 1-PPR) robotic manipulator. Robot Comp Integr Manuf 30(5):556–564

    Article  Google Scholar 

  9. Chen Y, Ma GY, Lin SX, Gao J (2012) Adaptive fuzzy computed-torque control for robot manipulator with uncertain dynamics. Int J Adv Rob Syst 9:201–209

    Google Scholar 

  10. Liang J, Chen L (2010) Fuzzy logic adaptive compensation control for dual-arm space robot based on computed torque controller to track desired trajectory in inertia space. Gongcheng Lixue/Eng Mech 27(11):221–228

    MathSciNet  Google Scholar 

  11. Wu DS, Gu HB, Li P (2011) Adaptive fuzzy control of Stewart platform under actuator saturation. World Acad Sci Eng Technol 60:680–684

    Google Scholar 

  12. Imani B, Ghanbari A, Noorani SS (2013) Modeling, path planning and control of a planar five-link bipedal robot by an adaptive fuzzy computed torque controller (AFCTC). In: International Conference on Robotics and Mechatronics, ICRoM 2013, pp 49–54

  13. Song ZS, Yi JQ, Zhao DB, Li XC (2005) A computed torque controller for uncertain robotic manipulator systems: fuzzy approach. Fuzzy Sets Syst 154:208–226

    Article  MathSciNet  MATH  Google Scholar 

  14. Feng W, Postlethwaite A (1993) Simple robust control scheme for robot manipulators with only joint position measurements. Int J Robot Res 12(5):490–496

    Article  Google Scholar 

  15. Masoud M, Mostafa G, Mohammad JS (2012) A nonlinear high gain observer based input-output control of flexible link manipulator. Mech Res Commun 45:34–41

    Article  Google Scholar 

  16. Zeng W, Wang C (2014) Learning from NN output feedback control of robot manipulators. Neurocomputing 125:172–182

    Article  Google Scholar 

  17. Boulkroune A, Tadjine M, M’Saad M, Farza M (2014) Design of a unified adaptive fuzzy observer for uncertain nonlinear systems. Inf Sci 265:139–153

    Article  MathSciNet  MATH  Google Scholar 

  18. Li CY, Tong SC, Wang W (2011) Fuzzy adaptive high-gain-based observer backstepping control for SISO nonlinear systems. Inf Sci 181:2405–2421

    Article  MathSciNet  MATH  Google Scholar 

  19. Boulkroune A, Bounar N, M’Saad M, Farza M (2014) Indirect adaptive fuzzy control scheme based on observer for nonlinear systems: a novel SPR-filter approach. Neurocomputing 135:378–387

    Article  Google Scholar 

  20. Li YM, Du YJ (2012) Indirect adaptive fuzzy observer and controller design based on interval type-2 T-S fuzzy model. Appl Math Model 36:1558–1569

    Article  MathSciNet  MATH  Google Scholar 

  21. Boulkroune A, M’saad M (2012) On the design of observer-based fuzzy adaptive controller for nonlinear systems with unknown control gain sign. Fuzzy Sets Syst 201:71–85

    Article  MathSciNet  MATH  Google Scholar 

  22. Wu TS, Karkoub M, Chen HS, Yu WS, Her MG (2015) Robust tracking observer-based adaptive fuzzy control design for uncertain nonlinear MIMO systems with time delayed states. Inf Sci 290:86–105

    Article  Google Scholar 

  23. Le TD, Kang HJ, Suh YS, Ro YS (2013) An online self-gain tuning method using neural networks for nonlinear PD computed torque controller of a 2-dof parallel manipulator. Neurocomputing 116:53–61

    Article  Google Scholar 

  24. Ioannou PA, Sun J (1996) Robust adaptive control. Prentice-Hall, Englewood. Cliffs, NJ

  25. Polycarpou MM, Ioannou PA (1996) A robust adaptive nonlinear control design. Automatica 32(3):423–427

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang LX (1992) Fuzzy systems are universal approximators, IEEE International Conference on Fuzzy Systems, San Diego, CA, USA, pp 1163–1170

  27. Wang LX (1993) Stable adaptive fuzzy control of nonlinear systems. IEEE Trans Fuzzy Syst 1(2):146–149

    Article  Google Scholar 

  28. Lewis FL, Dawson DM, Abdallah CT (2004) Robot manipulator control: theory and practice. Marcel Dekker, New York

    Google Scholar 

  29. Corless M, Leitmann G (1996) Exponential convergence for uncertain systems with componentwise bonded controllers. Springer, New York

    MATH  Google Scholar 

Download references

Acknowledgments

Grateful acknowledgement is given to the financial supports from the National Natural Science Foundation of China with Grant No. 51375264 and Science and Technology Major Project of Shandong Province with Grant No. 2015JMRH0218. This work was also partially supported by State Key Laboratory of Robotics and System (HIT) with Grant No. SKLRS-2015-MS-06, and China Post-doctoral Science Foundation with Grant No. 2014T70632 and 2013M530318, and Research Awards Fund for Excellent Young and Middle-aged Scientists of Shandong Province with Grant No. BS2013ZZ008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Chen.

Appendices

Appendix 1: Dynamic modeling of underwater vehicle

The inertia matrix \(M\) is divided into the rigid-body inertia \(M_{\text{RB}}\) and the hydrodynamic added inertia \(M_{\text{A}}\). The rigid-body inertial matrix, \(M_{\text{RB}}\), expresses the inertial terms of the vehicle. As the underwater vehicle moves in water, an added inertia \(M_{\text{A}}\) is used to represent the effective mass of the surrounding fluid as the vehicle accelerates. Rigid-body and added inertia matrix can be defined as follows:

$$M = M_{\text{RB}} { + }M_{\text{A}} = \left[ {\begin{array}{*{20}c} {mI_{3 \times 3} } & { - mS\left( {r_{g}^{b} } \right)} \\ {mS\left( {r_{g}^{b} } \right)} & {I_{0} } \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} {A_{11} } & {A_{12} } \\ {A_{21} } & {A_{22} } \\ \end{array} } \right]$$
(47)

where \(m\) denotes the mass of the underwater vehicle; \(I_{3 \times 3}\) is an identity matrix; \(I_{0}\) is the inertia matrix of the vehicle; \(r_{g}^{b} = \left[ {x_{g} ,y_{g} ,z_{g} } \right]^{T}\) is the vector from the coordinate origin of the inertial frame to center of gravity; \(S\left( \lambda \right)\) is a skew-symmetric matrix, and \(A_{11} = - \left[ {\begin{array}{*{20}c} {X_{{\dot{u}}} } & 0 & 0 \\ 0 & {Y_{{\dot{v}}} } & 0 \\ 0 & 0 & {Z_{{\dot{w}}} } \\ \end{array} } \right]\), \(A_{12} = - \left[ {\begin{array}{*{20}c} 0 & 0 & 0 \\ 0 & 0 & {Y_{{\dot{r}}} } \\ 0 & {Z_{{\dot{q}}} } & 0 \\ \end{array} } \right]\), \(A_{21} = - \left[ {\begin{array}{*{20}c} 0 & 0 & 0 \\ 0 & 0 & {M_{{\dot{w}}} } \\ 0 & {N_{{\dot{v}}} } & 0 \\ \end{array} } \right]\), \(A_{22} = - \left[ {\begin{array}{*{20}c} {K_{{\dot{p}}} } & 0 & 0 \\ 0 & {M_{{\dot{q}}} } & 0 \\ 0 & 0 & {N_{{\dot{r}}} } \\ \end{array} } \right]\).

The Coriolis and centripetal matrix, \(C\left( \upsilon \right)\), is divided into rigid-body term \(C_{RB} \left( \upsilon \right)\) and hydrodynamic Coriolis and centripetal term \(C_{A} \left( \upsilon \right)\). \(C_{RB} \left( \upsilon \right)\) consists of the centripetal and Coriolis vectors of the vehicle, and \(C_{A} \left( \upsilon \right)\) represents the hydrodynamic centripetal and Coriolis vectors originating from the surrounding fluid. The Coriolis and centripetal matrix is represented as follows:

$$\begin{aligned} C\left( \upsilon \right){\text{ = C}}_{RB} \left( \upsilon \right){\text{ + C}}_{A} \left( \upsilon \right) = \left[ {\begin{array}{*{20}c} {0_{3 \times 3} } & { - mS\left( {\upsilon_{1} } \right) - mS\left( {\upsilon_{2} } \right)S\left( {r_{g}^{b} } \right)} \\ { - mS\left( {\upsilon_{1} } \right) - mS\left( {\upsilon_{2} } \right)S\left( {r_{g}^{b} } \right)} & { - S\left( {I_{0} \upsilon_{2} } \right)} \\ \end{array} } \right] \hfill \\ \left[ {\begin{array}{*{20}c} {0_{3 \times 3} } & { - mS\left( {A_{11} \upsilon_{1} + A_{12} \upsilon_{2} } \right)} \\ { - mS\left( {A_{11} \upsilon_{1} + A_{12} \upsilon_{2} } \right)} & { - mS\left( {A_{21} \upsilon_{1} + A_{22} \upsilon_{2} } \right)} \\ \end{array} } \right] \hfill \\ \end{aligned}$$

When it can be roughly approximated and assumed that the vehicle has three planes of symmetry and the terms higher than second order are negligible, a diagonal structure of \(D\left( \upsilon \right)\) with only linear and quadratic damping terms can be written as follows [2]:

$$\begin{aligned} D\left( \upsilon \right) = D{ + }D_{n} \left( \upsilon \right){ = - }diag\left\{ {X_{u} ,Y_{v} ,Z_{w} ,K_{p} ,M_{q} ,N_{r} } \right\}{ - } \hfill \\ diag\left\{ {X_{u\left| u \right|} \left| u \right|,Y_{v\left| v \right|} \left| v \right|,Z_{w\left| w \right|} \left| w \right|,K_{p\left| p \right|} \left| p \right|,M_{q\left| q \right|} \left| q \right|,N_{r\left| r \right|} \left| r \right|} \right\} \hfill \\ \end{aligned}$$
(48)

where \(diag\left\{ {X_{u} ,Y_{v} ,Z_{w} ,K_{p} ,M_{q} ,N_{r} } \right\}\) is linear coefficient which can be derived by hydrodynamic derivatives, and \(diag\left\{ {X_{u\left| u \right|} \left| u \right|,Y_{v\left| v \right|} \left| v \right|,Z_{w\left| w \right|} \left| w \right|,K_{p\left| p \right|} \left| p \right|,M_{q\left| q \right|} \left| q \right|,N_{r\left| r \right|} \left| r \right|} \right\}\) is nonlinear cross flow coefficient that can be estimated by calculating the hull drag similar to strip theory.

The gravitational and buoyancy forces and moments, \(g\left( \eta \right)\), can be defined as a combined effects of the vehicle’s weight and buoyancy. The vector of gravitational and buoyancy forces and moments are given by

$$g\left( \eta \right) = \left[ {\begin{array}{*{20}c} {\left( {W - B} \right)\sin \theta } \\ { - \left( {W - B} \right)\cos \theta \sin \phi } \\ { - \left( {W - B} \right)\cos \theta \cos \phi } \\ { - \left( {Y_{G} W - Y_{B} B} \right)\cos \theta \cos \phi + \left( {Z_{G} W - Z_{B} B} \right)\cos \theta \sin \phi } \\ {\left( {Z_{G} W - Z_{B} B} \right)\sin \theta + \left( {X_{G} W - X_{B} B} \right)\cos \theta \cos \phi } \\ { - \left( {X_{G} W - X_{B} B} \right)\cos \theta \sin \phi - \left( {Y_{G} W - Y_{B} B} \right)\sin \theta } \\ \end{array} } \right]$$
(49)

Theorem 3

If there exists a continuous function \(V\left( \cdot \right):R^{n} \to R^{ + }\) for the continuous system described by Eq10 with the following properties: (1) There are scalars \(q \ge 1\), \(\omega_{1} > 0\) and \(\omega_{2} > 0\) such that \(\omega_{1} \left\| x \right\|^{q} \le V\left( x \right) \le \omega_{2} \left\| x \right\|^{q}\) for all \(x\left( t \right) \in R^{n}\); (2) There are scalars \(\bar{V}\) and \(\underline{V}\), with \(0 \le \underline{V} \le \bar{V} < \infty\), such that whenever \(\underline{V} \le V\left( x \right) \le \bar{V}\), \(V\) is continuously differentiable and \(\dot{V} = \frac{\partial V}{\partial t}f\left( {x,t} \right) \le - q\alpha \left[ {V\left( x \right) - \underline{V} } \right]\) for all \(t \in R^{ + }\), then the system (10) is uniformly and exponentially convergent to \(S = \varPhi \left( r \right)\) with rate \(\alpha\).

The proof was given by Corless and Leitman [29].

Appendix 2: Proof of Theorem 1

Now, let us define the Lyapunov function as follows:

$$V = \frac{1}{2}\tilde{r}^{T} \text{P} \tilde{r} + \frac{1}{2}tr\left( {\tilde{\theta }_{F}^{T} N_{F}^{ - 1} \tilde{\theta }_{F} } \right) + \frac{1}{2}tr\left( {\tilde{\theta }_{G}^{T} N_{G}^{ - 1} \tilde{\theta }_{G} } \right)$$
(50)

Using Eq. 30, the time derivative of \(V\) becomes

$$\begin{aligned} \dot{V} = - \frac{1}{2}\tilde{r}^{T} Q\tilde{r} + \tilde{Y}\left( {\tilde{\theta }_{F}^{T} \hat{\bar{\xi }}_{F} + \tilde{\theta }_{G}^{T} \hat{\bar{\xi }}_{G} u + \bar{W}_{F} + \bar{W}_{G} u + \bar{\delta }_{F} + \bar{\varepsilon }_{F} + \bar{\delta }_{G} + \bar{\varepsilon }_{G} u + \bar{\delta } + \bar{\varPhi }_{1} + \bar{\varPhi }_{2} } \right) \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + tr\left( {\tilde{\theta }_{F}^{T} N_{F}^{ - 1} \tilde{\theta }_{F} } \right) + tr\left( {\tilde{\theta }_{G}^{T} N_{G}^{ - 1} \tilde{\theta }_{G} } \right) \hfill \\ \end{aligned}$$
(51)

Substituting the parameter adaptive law (25) and two terms that \(\dot{\tilde{\theta }}_{F} = - \dot{\hat{\theta }}_{F}\), \(\dot{\tilde{\theta }}_{G} = - \dot{\hat{\theta }}_{G}\) into Eq. (51) yields

$$\begin{aligned} \dot{V} = - \frac{1}{2}\tilde{r}^{T} Q\tilde{r} + \tilde{Y}\left( {\tilde{\theta }_{F}^{T} \hat{\bar{\xi }}_{F} + \tilde{\theta }_{G}^{T} \hat{\bar{\xi }}_{G} u + \bar{W}_{F} + \bar{W}_{G} u + \bar{\delta }_{F} + \bar{\varepsilon }_{F} + \bar{\delta }_{G} + \bar{\varepsilon }_{G} u + \bar{\delta } + \bar{\varPhi }_{1} + \bar{\varPhi }_{2} } \right) \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - tr\left( {\tilde{\theta }_{F}^{T} \hat{\bar{\xi }}_{F} \tilde{Y}} \right) + K_{F} \left\| {\tilde{Y}} \right\|tr\left( {\tilde{\theta }_{F}^{T} \hat{\theta }_{F} } \right){\kern 1pt} {\kern 1pt} - tr\left( {\tilde{\theta }_{G}^{T} \hat{\bar{\xi }}_{G} \tilde{Y}u} \right) + K_{G} \left\| {\tilde{Y}} \right\|tr\left( {\tilde{\theta }_{G}^{T} \hat{\theta }_{G} } \right) \hfill \\ \end{aligned}$$
(52)

Using matrices traces properties \(tr\left( {\tilde{\theta }_{F}^{T} \hat{\tilde{\xi }}_{F} \tilde{Y}} \right) = \tilde{Y}\tilde{\theta }_{F}^{T} \hat{\tilde{\xi }}_{F}\) and \(tr\left( {\tilde{\theta }_{G}^{T} \hat{\tilde{\xi }}_{G} \tilde{Y}u} \right) = \tilde{Y}\tilde{\theta }_{G}^{T} \hat{\tilde{\xi }}_{G} u\), Eq. 52 can be rewritten as follows:

$$\begin{aligned} \dot{V} = - \frac{1}{2}\tilde{r}^{T} Q\tilde{r} + \tilde{Y}\left( {\bar{W}_{F} + \bar{W}_{G} u + \bar{\delta }_{F} + \bar{\varepsilon }_{F} + \bar{\delta }_{G} + \bar{\varepsilon }_{G} u + \bar{\delta } + \bar{\varPhi }_{1} + \bar{\varPhi }_{2} } \right) \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + K_{F} \left\| {\tilde{Y}} \right\|tr\left( {\tilde{\theta }_{F}^{T} \hat{\theta }_{F} } \right){\kern 1pt} + K_{G} \left\| {\tilde{Y}} \right\|tr\left( {\tilde{\theta }_{G}^{T} \hat{\theta }_{G} } \right) \hfill \\ \end{aligned}$$
(53)

Substituting the following inequalities into Eq. 53

$$\tilde{Y}\left( {\bar{W}_{F} + \bar{\varPhi }_{1} } \right) = \tilde{Y}\left( {\bar{W}_{F} - \rho_{1} \text{sgn} \left( {\tilde{Y}} \right)} \right) \le \left\| {\tilde{Y}} \right\|\left( {\beta_{1} \sigma_{M} - \rho_{1} } \right) \le 0$$
$$\tilde{Y}\left( {\bar{W}_{G} u + \bar{\varPhi }_{2} } \right) = \tilde{Y}\left( {\bar{W}_{G} u - \rho_{2} \text{sgn} \left( {\tilde{Y}} \right)} \right) \le \left\| {\tilde{Y}} \right\|\left( {\beta_{2} \sigma_{M} u_{d} - \rho_{2} } \right) \le 0$$

where \(\sigma_{M} = \sigma_{\hbox{max} } \left[ {L^{ - 1} \left( s \right)} \right]\), \(\rho_{1} \ge \beta_{1} \sigma_{M}\), \(\rho_{2} \ge \beta_{2} \sigma_{M} u_{d}\), yields

$$\begin{aligned} \dot{V} &\le - \frac{1}{2}\lambda_{\hbox{min} } \left( Q \right)\left\| {\tilde{r}} \right\|^{2} + \tilde{Y}\left( {\bar{\delta }_{F} + \bar{\varepsilon }_{F} + \bar{\delta }_{G} + \bar{\varepsilon }_{G} u + \bar{\delta }} \right) \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} &\quad+ K_{F} \left\| {\tilde{Y}} \right\|tr\left( {\tilde{\theta }_{F}^{T} \hat{\theta }_{F} } \right){\kern 1pt} + K_{G} \left\| {\tilde{Y}} \right\|tr\left( {\tilde{\theta }_{G}^{T} \hat{\theta }_{G} } \right) \hfill \\ \end{aligned}$$
(54)

Using Eq. 28, we can rewrite Eq. 54 as follows:

$$\begin{aligned} \dot{V} \le - \frac{1}{2}\lambda_{\hbox{min} } \left( Q \right)\left\| {\tilde{r}} \right\|^{2} + \left\| {\tilde{Y}} \right\|\left( {\bar{\varepsilon }_{F} + \bar{\varepsilon }_{G} u + \bar{\delta }{ + }D_{F} \left\| {\tilde{\theta }_{F} } \right\|_{F} { + }D_{G} \left\| {\tilde{\theta }_{G} } \right\|_{F} } \right) \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + K_{F} \left\| {\tilde{Y}} \right\|tr\left( {\tilde{\theta }_{F}^{T} \left( {\theta_{F} - \tilde{\theta }_{F} } \right)} \right){\kern 1pt} + K_{G} \left\| {\tilde{Y}} \right\|tr\left( {\tilde{\theta }_{G}^{T} \left( {\theta_{G} - \tilde{\theta }_{G} } \right)} \right) \hfill \\ \end{aligned}$$
(55)

where \(\lambda_{\hbox{min} } \left( Q \right)\) represents the smallest eigenvalue of \(Q\).

Since \(- \lambda_{\hbox{min} } \left( Q \right)\left\| {\tilde{r}} \right\|^{2} \le - \lambda_{\hbox{min} } \left( Q \right)\left\| {\tilde{Y}} \right\|^{2}\), \(tr\left[ {\tilde{\theta }^{T} \left( {\theta - \tilde{\theta }} \right)} \right] \le \theta_{M} \left\| {\tilde{\theta }} \right\|_{F} - \left\| {\tilde{\theta }} \right\|_{F}^{2}\), we have

$$\dot{V} \le - \left\| {\tilde{Y}} \right\|\left[ \begin{aligned} \frac{1}{4}\lambda_{\hbox{min} } \left( Q \right)\left\| {\tilde{Y}} \right\| + \frac{1}{4}\lambda_{\hbox{min} } \left( Q \right)\left\| {\tilde{Y}} \right\| - \sigma_{M} \left( {\varepsilon_{F,N} + \varepsilon_{G,N} u_{d} + b_{d} } \right) + K_{F} \left( {\left\| {\tilde{\theta }_{F} } \right\|_{F} - \frac{1}{2}\lambda_{F} } \right)^{2} \hfill \\ - \frac{1}{4}K_{F} \lambda_{F}^{2} + K_{G} \left( {\left\| {\tilde{\theta }_{G} } \right\|_{F} - \frac{1}{2}\lambda_{G} } \right)^{2} - \frac{1}{4}K_{G} \lambda_{G}^{2} \hfill \\ \end{aligned} \right]$$
(56)

where \(\lambda_{F} = \theta_{F,M} + \frac{{D_{F} }}{{K_{F} }}\), \(\lambda_{G} = \theta_{G,M} + \frac{{D_{G} }}{{K_{G} }}\).

If \(\tilde{y}\) lies outside the following compact set \(\varOmega_{{\tilde{y}}}\), \(\dot{V}\) will be negative.

$$\varOmega_{{\tilde{y}}} = \left\{ {\tilde{Y}\left| {\left\| {\tilde{Y}} \right\| \le \hbox{max} \left\{ {\frac{{4\sigma_{M} \left( {b_{d} + \varepsilon_{F,N} } \right) + K_{F} \lambda_{F}^{2} }}{{\lambda_{\hbox{min} } \left( Q \right)}},\frac{{4\sigma_{M} \varepsilon_{G,N} u_{d} + K_{G} \lambda_{G}^{2} }}{{\lambda_{\hbox{min} } \left( Q \right)}}} \right\}} \right.} \right\}$$
(57)

Based on the standard Lyapunov theorem (see [28]), one can conclude that \(\tilde{Y}\) will converge to \(\varOmega_{{\tilde{Y}}}\). Furthermore, the radius of \(\varOmega_{{\tilde{Y}}}\) can be designed arbitrarily small if \(K_{F} ,K_{G}\) are chosen to be sufficiently small.

One can also guarantee that \(\dot{V}\) is negative when the parameter adaptive error vectors \(\tilde{\theta }_{G}\) and \(\tilde{\theta }_{F}\) are bounded and converge to \(\varOmega_{{\tilde{\theta }_{G} }}\) and \(\varOmega_{{\tilde{\theta }_{F} }}\), which are defined as follows:

$$\varOmega_{{\tilde{\theta }_{F} }} = \left\{ {\tilde{\theta }_{F} \left| {\left\| {\tilde{\theta }_{F} } \right\| \le \frac{1}{2}\lambda_{F} { + }\sqrt {\frac{{\sigma_{M} \left( {b_{d} + \varepsilon_{F,N} } \right)}}{{K_{F} }}{ + }\frac{{\lambda_{F}^{2} }}{4}} } \right.} \right\}$$
(58)
$$\varOmega_{{\tilde{\theta }_{G} }} = \left\{ {\tilde{\theta }_{G} \left| {\left\| {\tilde{\theta }_{G} } \right\| \le \frac{1}{2}\lambda_{G} { + }\sqrt {\frac{{\sigma_{M} \varepsilon_{G,N} u_{d} }}{{K_{G} }}{ + }\frac{{\lambda_{G}^{2} }}{4}} } \right.} \right\}$$
(59)

The tracking error Eq. 19 can also be rewritten as follows:

$$\dot{\tilde{X}} = \left( {A - KC^{T} } \right)\tilde{X} + B\tilde{u}$$
(60)

where \(\tilde{u} = \tilde{\theta }_{F}^{T} \hat{\xi }_{F} + \tilde{\theta }_{G}^{T} \hat{\xi }_{G} u + C\) with \(C = W_{F} + \varepsilon_{F} + \varPhi_{ 1} + \left( {W_{G} + \varepsilon_{G} } \right)u + \delta + \varPhi_{2}\). Using the Lemma 1, Eq. 60 can be expressed as

$$\left\| X \right\| \le K_{1} + K_{2} \left\| {\tilde{u}} \right\|_{2}^{\alpha }$$
(61)

Using the following inequalities

$$\left\| {\tilde{\theta }_{F}^{T} \hat{\xi }_{F} } \right\|_{2}^{\alpha } \le \left\| {\tilde{\theta }_{F}^{T} } \right\|_{F}^{\alpha } \sqrt {\int_{0}^{t} {e^{{ - a\left( {t - \tau } \right)}} \hat{\xi }_{F} \hat{\xi }_{F}^{T} d\tau } } = \left\| {\tilde{\theta }_{F}^{T} } \right\|_{F}^{\alpha } \left\| {\hat{\xi }_{F} } \right\|\frac{1}{\sqrt a }\sqrt {1 - e^{ - at} } \le \left\| {\tilde{\theta }_{F}^{T} } \right\|_{F}^{\alpha } \frac{1}{\sqrt a }S_{5}^{1}$$
$$\left\| {\tilde{\theta }_{G}^{T} \hat{\xi }_{G} } \right\|_{2}^{\alpha } \le \left\| {\tilde{\theta }_{G}^{T} } \right\|_{F}^{\alpha } \sqrt {\int_{0}^{t} {e^{{ - a\left( {t - \tau } \right)}} \hat{\xi }_{G} \hat{\xi }_{G}^{T} d\tau } } = \left\| {\tilde{\theta }_{G}^{T} } \right\|_{F}^{\alpha } \left\| {\hat{\xi }_{G} } \right\|\frac{1}{\sqrt a }\sqrt {1 - e^{ - at} } \le \left\| {\tilde{\theta }_{G}^{T} } \right\|_{F}^{\alpha } \frac{1}{\sqrt a }S_{6}^{1}$$

where \(S_{5}^{1} = \left\| {\hat{\xi }_{F} } \right\|\sqrt {1{ - }e^{ - at} }\), \(S_{6}^{1} = \left\| {\hat{\xi }_{G} } \right\|\sqrt {1{ - }e^{ - at} }\), \(\left\| C \right\|_{2}^{\alpha } \le S_{4}^{1}\), one can obtain

$$\left\| X \right\| \le S_{1} { + }\left( {S_{2} \left\| {\tilde{\theta }_{F}^{T} } \right\|_{F}^{\alpha } + S_{3} \left\| {\tilde{\theta }_{G}^{T} } \right\|_{F}^{\alpha } } \right)\frac{1}{\sqrt a }$$
(62)

where \(S_{1} = K_{1} + K_{2} S_{4}^{1}\), \(S_{2} = K_{2} S_{5}^{1}\), \(S_{3} = K_{2} S_{6}^{1}\).

From the inequalities (58) and (59), the state estimation error \(\left\| {\tilde{x}} \right\|\) is limited by the two bounded weight estimation errors \(\left\| {\tilde{\theta }_{F}^{T} } \right\|_{F}^{\alpha }\) and \(\left\| {\tilde{\theta }_{G}^{T} } \right\|_{F}^{\alpha }\). This proof is completed.

Appendix 3: Proof of Theorem 2

Now, let us design the following Lyapunov function:

$$V = \frac{1}{2}\chi_{e}^{T} P_{c} \chi_{e} + \frac{1}{2}\sum\limits_{i = 1}^{M} {\frac{1}{{\gamma_{i} }}\tilde{\theta }_{i}^{T} \varGamma_{i}^{ - 1} \tilde{\theta }_{i} }$$
(63)

where \(\gamma_{i} \in \left[ {0, + \infty } \right]\), \(\chi_{e} = \left[ {e,\dot{e}} \right]^{T}\),\(\varGamma_{i}^{ - 1} = {\text{diag}}\left\{ {l_{1}^{ - 1} ,l_{2}^{ - 1} , \ldots ,l_{M}^{ - 1} } \right\}\), \(\tilde{\theta }_{i} = \hat{\theta }_{i} - \theta_{i}\).Let \(V_{1} = \frac{1}{2}\chi_{e}^{T} P_{c} \chi_{e}\) and \(V_{2} = \frac{1}{2}\sum\limits_{i = 1}^{M} {\frac{1}{{\gamma_{i} }}\tilde{\theta }_{i}^{T} \varGamma_{i}^{ - 1} \tilde{\theta }_{i} }\). Differentiating \(V_{1}\) along the tracking error dynamic Eq. 36 and using the Riccati-like Eq. 39, one can obtain

$$\dot{V}_{1} = \frac{1}{2}\chi_{e}^{T} \left( {A_{c}^{T} P_{c} + P_{c} A_{c} } \right)\chi_{e} + x_{e}^{T} P_{c} B_{c} \psi - x_{e}^{T} P_{c} B_{c} \phi_{f}$$
(64)

Now, using the boundaries of the uncertainties in Assumption 1 and \(\phi_{f} = \phi_{1} + K_{D} \phi_{2} + K_{P} \phi_{3}\), we can get

$$\begin{aligned} \dot{V}_{1} \le \frac{1}{2}\chi_{e}^{T} \left( {A_{c}^{T} P_{c} + P_{c} A_{c} } \right)\chi_{e} + \left[ {\left\| {\theta_{1}^{T} \xi \left( {x_{d} } \right)} \right\| + K_{D} \left\| {\theta_{2}^{T} \xi \left( {x_{d} } \right)} \right\| + K_{P} \left\| {\theta_{3}^{T} \xi \left( {x_{d} } \right)} \right\|} \right]\left\| {\chi_{e}^{T} P_{c} B_{c} } \right\| \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - \chi_{e}^{T} P_{c} B_{c} \left[ {\phi_{1} + K_{D} \phi_{2} + K_{P} \phi_{3} } \right] \\ \end{aligned}$$
(65)

Substituting Eq. 37 into Eq. 65 yields

$$\begin{aligned} \dot{V}_{1} \le \frac{1}{2}\chi_{e}^{T} \left( {A_{c}^{T} P_{c} + P_{c} A_{c} } \right)\chi_{e} + \left[ {\left\| {\hat{\theta }_{1}^{T} \xi \left( {x_{d} } \right)\chi_{e}^{T} P_{c} B_{c} } \right\|{ - }\chi_{e}^{T} P_{c} B_{c} \hat{\theta }_{1}^{T} \xi \left( {x_{d} } \right)\tanh \left( {\frac{{\hat{\theta }_{1}^{T} \xi \left( {x_{d} } \right)B_{c}^{T} P_{c} x_{d} }}{\varepsilon }} \right)} \right] \\ { + }K_{D} \left[ {\left\| {\hat{\theta }_{2}^{T} \xi \left( {x_{d} } \right)\chi_{e}^{T} P_{c} B_{c} } \right\|{ - }\chi_{e}^{T} P_{c} B_{c} \hat{\theta }_{2}^{T} \xi \left( {x_{d} } \right)\tanh \left( {\frac{{\hat{\theta }_{2}^{T} \xi \left( {x_{d} } \right)B_{c}^{T} P_{c} x_{d} }}{\varepsilon }} \right)} \right] \\ { + }K_{P} \left[ {\left\| {\hat{\theta }_{p}^{T} \xi \left( {x_{d} } \right)\chi_{e}^{T} P_{c} B_{c} } \right\|{ - }\chi_{e}^{T} P_{c} B_{c} \hat{\theta }_{p}^{T} \xi \left( {x_{d} } \right)\tanh \left( {\frac{{\hat{\theta }_{p}^{T} \xi \left( {x_{d} } \right)B_{c}^{T} P_{c} x_{d} }}{\varepsilon }} \right)} \right] \\ - \left[ {\left\| {\tilde{\theta }_{1}^{T} \xi \left( {x_{d} } \right)\chi_{e}^{T} P_{c} B_{c} } \right\| + K_{D} \left\| {\tilde{\theta }_{2}^{T} \xi \left( {x_{d} } \right)\chi_{e}^{T} P_{c} B_{c} } \right\| + K_{P} \left\| {\tilde{\theta }_{3}^{T} \xi \left( {x_{d} } \right)\chi_{e}^{T} P_{c} B_{c} } \right\|} \right] \\ \end{aligned}$$
(66)

Let \(\eta_{1} = \hat{\theta }_{1}^{T} \xi \left( {x_{d} } \right)\chi_{e}^{T} P_{c} B_{c}\), \(\eta_{2} = \hat{\theta }_{2}^{T} \xi \left( {x_{d} } \right)\chi_{e}^{T} P_{c} B_{c}\) and \(\eta_{3} = \hat{\theta }_{3}^{T} \xi \left( {x_{d} } \right)\chi_{e}^{T} P_{c} B_{c}\). Using Lemma 2, the following inequalities can be obtained: \(\left| {\eta_{i} } \right| - \eta_{i} \tanh \left( {\frac{{\eta_{i} }}{\varepsilon }} \right) \le \kappa_{i} \varepsilon_{i}\). Therefore, Eq. 66 becomes

$$\begin{aligned} \dot{V}_{1} \le \frac{1}{2}\chi_{e}^{T} \left( {A_{c}^{T} P_{c} + P_{c} A_{c} } \right)\chi_{e} + \kappa \varepsilon \\ - \left[ {\tilde{\theta }_{1}^{T} \xi \left( {x_{d} } \right)B_{c}^{T} P_{c} \chi_{e} + K_{D} \tilde{\theta }_{2}^{T} \xi \left( {x_{d} } \right)B_{c}^{T} P_{c} \chi_{e} + K_{P} \tilde{\theta }_{3}^{T} \xi \left( {x_{d} } \right)B_{c}^{T} P_{c} \chi_{e} } \right] \\ \end{aligned}$$
(67)

where \(\kappa \varepsilon = \kappa_{1} \varepsilon_{1} { + }K_{D} \kappa_{2} \varepsilon_{2} { + }K_{P} \kappa_{3} \varepsilon_{3}\).

Then, differentiating \(V_{2}\) in Eq. 63 along the tracking error dynamic Eq. 36, and using the adaptive law (38), one can obtain

$$\dot{V}_{2} = \sum\limits_{i = 1}^{M} {\left[ {{ - }\frac{{\lambda_{i} }}{{\gamma_{i} }}\tilde{\theta }_{i}^{T} \varGamma_{i}^{ - 1} \left( {\tilde{\theta }_{i} { + }\theta_{i} } \right){ + }\frac{1}{{\gamma_{i} }}\tilde{\theta }_{i}^{T} \xi \left( {x_{d} } \right)B_{c}^{T} P_{c} \chi_{e} } \right]}$$
(68)

Since \(\tilde{\theta }_{i}^{T} \varGamma_{i}^{ - 1} \tilde{\theta }_{i} { + }\tilde{\theta }_{i}^{T} \varGamma_{i}^{ - 1} \theta_{i} \ge \frac{1}{2}\left( {\tilde{\theta }_{i}^{T} \varGamma_{i}^{ - 1} \tilde{\theta }_{i} - \theta_{i}^{T} \varGamma_{i}^{ - 1} \theta_{i} } \right)\), Eq. 68 can be arranged

$$\dot{V}_{2} \le \sum\limits_{i = 1}^{M} {\left[ {{ - }\frac{{\lambda_{i} }}{{2\gamma_{i} }}\left( {\tilde{\theta }_{i}^{T} \varGamma_{i}^{ - 1} \tilde{\theta }_{i} { - }\theta_{i}^{T} \varGamma_{i}^{ - 1} \theta_{i} } \right){ + }\frac{1}{{\gamma_{i} }}\tilde{\theta }_{i}^{T} \xi \left( {x_{d} } \right)B_{c}^{T} P_{c} \chi_{e} } \right]}$$
(69)

From Eqs. 67 and 69, one can obtain the following boundedness of the time-derivative of the Lyapunov function:

$$\begin{aligned} \dot{V} \le \frac{1}{2}\chi_{e}^{T} \left( {A_{c}^{T} P_{c} + P_{c} A_{c} } \right)\chi_{e} + \kappa \varepsilon - K_{\hbox{min} } \sum\limits_{i = 1}^{M} {\left( {\tilde{\theta }_{i}^{T} \xi \left( {x_{d} } \right)B_{c}^{T} P_{c} \chi_{e} } \right)} \\ { + }\sum\limits_{i = 1}^{M} {\left( { - \frac{{\lambda_{i} }}{{2\gamma_{i} }}\tilde{\theta }_{i}^{T} \varGamma_{i}^{ - 1} \tilde{\theta }_{i} } \right){ + }\sum\limits_{i = 1}^{M} {\left( {\frac{{\lambda_{i} }}{{2\gamma_{i} }}\theta_{i}^{T} \varGamma_{i}^{ - 1} \theta_{i} } \right)} { + }\sum\limits_{i = 1}^{M} {\left( {\frac{1}{{\gamma_{i} }}\tilde{\theta }_{i}^{T} \xi \left( {x_{d} } \right)B_{c}^{T} P_{c} \chi_{e} } \right)} } \\ \end{aligned}$$
(70)

where \(K_{\hbox{min} } = \hbox{min} \left\{ {1,K_{D} ,K_{P} } \right\}\).

Using Lemma 3, one can obtain the following inequality:\(\tilde{\theta }_{i}^{T} \xi \left( {x_{d} } \right)B_{c}^{T} P_{c} \chi_{e} \le \frac{1}{2}\left[ {\delta \tilde{\theta }_{i}^{T} \xi \left( {x_{d} } \right)\xi \left( {x_{d} } \right)^{T} \tilde{\theta }_{i} + \delta^{ - 1} \chi_{e}^{T} P_{c} B_{c} B_{c}^{T} P_{c} \chi_{e} } \right]\), where \(\delta\) is an arbitrarily small positive constant. Substituting the inequality into Eq. 70 yields

$$\begin{aligned} \dot{V} \le \frac{1}{2}\chi_{e}^{T} \left( {A_{c}^{T} P_{c} + P_{c} A_{c} { + }\delta^{ - 1} \sum\limits_{i = 1}^{M} {\left( {\frac{1}{{\gamma_{i} }} - K_{\hbox{min} } } \right)P_{c} B_{c} B_{c}^{T} P_{c} } } \right)\chi_{e} + \kappa \varepsilon \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} { + }\sum\limits_{i = 1}^{M} {\left( {\left( {{ - }\frac{{\lambda_{i} }}{2}{ + }\frac{\delta }{{2\varGamma_{i}^{ - 1} }}\left( {1 - \gamma_{i} K_{\hbox{min} } } \right)\xi \left( {x_{d} } \right)\xi \left( {x_{d} } \right)^{T} } \right)\frac{1}{{\gamma_{i} }}\tilde{\theta }_{i}^{T} \varGamma_{i}^{ - 1} \tilde{\theta }_{i} } \right)} { + }\sum\limits_{i = 1}^{M} {\left( {\frac{{\lambda_{i} }}{{2\gamma_{i} }}\theta_{i}^{T} \varGamma_{i}^{ - 1} \theta_{i} } \right)} \\ \end{aligned}$$
(71)

Substituting the Riccati-like Eq. 39 into Eq. 71 yields

$$\begin{aligned} \dot{V} \le - \frac{1}{2}\frac{{\lambda_{\hbox{min} } \left( {Q_{c} } \right)}}{{\lambda_{\hbox{max} } \left( {P_{c} } \right)}}\chi_{\varepsilon }^{T} P_{c} \chi_{\varepsilon } + \frac{1}{2}\sum\limits_{i = 1}^{M} {\left( {\left( {{ - }\lambda_{i} { + }\frac{\delta }{{\varGamma_{i}^{ - 1} }}\left( {1 - \gamma_{i} K_{\hbox{min} } } \right)\xi \left( {x_{d} } \right)\xi \left( {x_{d} } \right)^{T} } \right)\frac{1}{{\gamma_{i} }}\tilde{\theta }_{i}^{T} \varGamma_{i}^{ - 1} \tilde{\theta }_{i} } \right)} \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + \kappa \varepsilon { + }\sum\limits_{i = 1}^{M} {\left( {\frac{{\lambda_{i} }}{{2\gamma_{i} }}\theta_{i}^{T} \varGamma_{i}^{ - 1} \theta_{i} } \right)} \\ \le - \mu V + \sigma \\ \end{aligned}$$
(72)

where \(\mu = \hbox{min} \left\{ {\frac{{\lambda_{\hbox{min} } \left( {Q_{c} } \right)}}{{\lambda_{\hbox{max} } \left( {P_{c} } \right)}},\lambda_{i} { + }\frac{\delta }{{\varGamma_{i}^{ - 1} }}\left( {\gamma_{i} K_{\hbox{min} } - 1} \right)\xi \left( {x_{d} } \right)\xi \left( {x_{d} } \right)^{T} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left( {i = 1,2, \cdots ,M} \right)} \right\}\), \(\sigma = \kappa \varepsilon { + }\sum\limits_{i = 1}^{M} {\left( {\frac{{\lambda_{i} }}{{2\gamma_{i} }}\theta_{i}^{T} \varGamma_{i}^{ - 1} \theta_{i} } \right)}\).

Since \(\omega_{1} \left( {\left\| {\chi_{e} } \right\|^{2} + \sum\limits_{i = 1}^{M} {\left\| {\tilde{\theta }_{i} } \right\|^{2} } } \right) \le V\left( x \right) \le \omega_{2} \left( {\left\| {\chi_{e} } \right\|^{2} + \sum\limits_{i = 1}^{M} {\left\| {\tilde{\theta }_{i} } \right\|^{2} } } \right)\), in which \(\omega_{1} = \frac{1}{2}\hbox{min} \left( {\lambda_{\hbox{min} } \left( {P_{c} } \right),\sum\limits_{i = 1}^{M} {\frac{1}{{\gamma_{i} }}\lambda_{\hbox{min} } \left( {\varGamma_{i}^{ - 1} } \right)} } \right)\) and \(\omega_{2} = \frac{1}{2}\hbox{max} \left( {\lambda_{\hbox{max} } \left( {P_{c} } \right),\sum\limits_{i = 1}^{M} {\frac{1}{{\gamma_{i} }}\lambda_{\hbox{max} } \left( {\varGamma_{i}^{ - 1} } \right)} } \right)\), \(V\left( x \right)\) satisfies the first property in the Theorem 3 in “Appendix 1”. Furthermore, we can obtain the second property \(\dot{V} \le - q\alpha \left[ {V - \underline{V} } \right]\), where \(q = 2\), \(\alpha = \frac{1}{2}\mu\). Therefore, using the Theorem 3, it can be seen that the tracking error converges towards a residual set \(\varPhi \left( r \right)\) with the convergence rate \({\raise0.7ex\hbox{$\mu $} \!\mathord{\left/ {\vphantom {\mu 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}\).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhang, R., Zhao, X. et al. Tracking control of underwater vehicle subject to uncertainties using fuzzy inverse desired trajectory compensation technique. J Mar Sci Technol 21, 624–650 (2016). https://doi.org/10.1007/s00773-016-0379-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-016-0379-9

Keywords

Navigation