Skip to main content
Log in

Numerical and experimental motion simulations of nonsymmetric ship collisions

  • Original Article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

A calculation model to simulate nonsymmetric ship collisions, implying an arbitrary impact location and collision angle, is described in the paper. The model that is introduced is based on the time integration of twelve equations of motion, six for each ship. The motions of the ships are linked together by a mutual contact force. The contact force is evaluated as an integral over the surface tractions at the contact interface. The calculation model provides full time histories of the ship motions and the acting forces. Physical understanding of the underlying phenomena was obtained by a series of model-scale experiments in which a striking ship collided with an initially motionless struck ship. In this paper, numerical simulations of four nonsymmetric collisions are presented and the calculations are validated with the results of the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Eliopoulou E, Papanikolaou A (2007) Casualty analysis of large tankers. J Mar Sci Technol 12:240–250

    Article  Google Scholar 

  2. Tuovinen J (2005) Statistical analysis of ship collisions (master’s thesis). Helsinki University of Technology, Helsinki

  3. Minorsky VU (1959) An analysis of ship collision with reference to protection of nuclear power plants. J Ship Res 3:1–4

    Google Scholar 

  4. Woisin G (1988) Instantaneous loss of energy with unsymmetrical ship collisions. Schiff Hafen 40:50–55

    Google Scholar 

  5. Pedersen PT, Zhang S (1998) On impact mechanics in ship collisions. J Mar Struct 11:429–449

    Article  Google Scholar 

  6. Petersen MJ (1982) Dynamics of ship collisions. Ocean Eng 9:295–329

    Article  Google Scholar 

  7. Brown AJ (2002) Collision scenarios and probabilistic collision damage. J Mar Struct 15:335–364

    Article  Google Scholar 

  8. Cummins WE (1962) The impulse response function and ship motions. Schifftechnik 9:101–109

    Google Scholar 

  9. Ogilvie TF (1964) Recent programme towards the understanding and prediction of ship motions. In: Proceeding 5th Symp on Naval Hydrodynamics, Bergen, Norway, 10–12 Sept 1964, pp 3–128

  10. Tabri K, Määttänen J, Ranta J (2008) Model-scale experiments of symmetric ship collisions. J Mar Sci Technol 13:71–84

    Article  Google Scholar 

  11. Clayton BR, Bishop RED (1982) Mechanics of marine vehicles. E. F. N. Spon Ltd, London

    Google Scholar 

  12. Gale C, Eronen H, Hellevaara M, Skogman A (1994) Perceived advantages of Z-drive escort tugs. In: Proceeding Int Towage and Salvage Convention, Southampton, UK, 17–21 Oct 1994, pp 163–176

  13. Matusiak J (2001) Importance of memory effect for ship capsizing prediction. In: Proceeding 5th Int Workshop on Ship Stability, Trieste, Italy, 12–13 Sept 2001

  14. Dupont P, Armstrong B, Hayward V (2000) Elasto-plastic friction model: contact compliance and stiction. In: Proceedings of the American Control Conference. AACC, Chicago, pp 1072–1077

  15. Canudas de Wit C, Olsson H, Åström J, Lischinsky P (1995) A new model for control of systems with friction. IEEE Trans Automat Contr 40:419–425

    Article  MATH  Google Scholar 

  16. Dormand JR, Prince PJ (1980) A family of embedded Runge–Kutta formulae. J Comp Appl Math 6:19–26

    Article  MATH  MathSciNet  Google Scholar 

  17. Wevers LJ, Vredeveldt AW (1999) Full scale ship collision experiments (TNO report 98-CMC-R1725). TNO, Delft

  18. Määttänen J (2005) Experiments on ship collisions in model scale (master’s thesis). Helsinki University of Technology, Helsinki

  19. Journée JMJ (1992) Strip theory algorithms (report MEMT 24). Delft University of Technology, Delft

  20. Ranta J, Tabri K (2007) Study on the properties of polyurethane foam for model-scale ship collision experiments (report M-297). Helsinki University of Technology, Helsinki

  21. Tabri K, Broekhuijsen J, Matusiak J, Varsta P (2009) Analytical modelling of ship collision based on full-scale experiments. J Mar Struct 22:42–61

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristjan Tabri.

Appendices

Appendix 1: Scalar form of equations of motion

For numerical integration, the equation of motion

$$ \left[ {\begin{array}{*{20}c} {\left[ {\mathbf{M}} \right]} & 0 \\ 0 & {\left[ {\mathbf{I}} \right]} \\ \end{array} } \right]\,\left\{ {\begin{array}{*{20}c} {{\dot{\mathbf{u}}}} \\ {{\dot{\mathbf{\Upomega }}}} \\ \end{array} } \right\} + \left\{ {\begin{array}{*{20}c} {\left[ {\mathbf{M}} \right]{\varvec{\Upomega}} \times {\mathbf{u}}} \\ {{\varvec{\Upomega}} \times \left[ {\mathbf{I}} \right]{\varvec{\Upomega}}} \\ \end{array} } \right\} - {\mathbf{F}}_{\text{R}} - {\mathbf{F}}_{\mu } = \left\{ {\begin{array}{*{20}c} {\mathbf{F}} \\ {\mathbf{G}} \\ \end{array} } \right\} - {\mathbf{F}}_{\text{R}} - {\mathbf{F}}_{\mu } $$
(38)

is rearranged to obtain a more convenient form:

$$ \left[ {{\mathbf{M}}_{\mu } } \right]\left\{ {\begin{array}{*{20}c} {{\dot{\mathbf{u}}}} \\ {{\dot{\mathbf{\Upomega }}}} \\ \end{array} } \right\} + \left[ {{\mathbf{M}}_{\mu }^{\Upomega } } \right]\left\{ {\begin{array}{*{20}c} {\mathbf{u}} \\ {\varvec{\Upomega}} \\ \end{array} } \right\} - \left( {\left[ {\mathbf{T}} \right]^{\text{T}} \left[ {\mathbf{K}} \right]\begin{array}{*{20}c} {\left\{ {\mathbf{R}} \right\}} \\ {\left[ {\varvec\varphi} \right]} \\ \end{array} + \left[ {\mathbf{K}} \right]\begin{array}{*{20}c} {\left\{ {{\text{d}}{\mathbf{x}}} \right\}} \\ {\left[ {{\text{d}}{\varvec\varphi} } \right]} \\ \end{array} } \right) = \left\{ {\begin{array}{*{20}c} {\mathbf{F}} \\ {\mathbf{G}} \\ \end{array} } \right\} - {\mathbf{F}}_{\text{R}} - {\mathbf{F}}_{\mu } $$
(39)

where the matrices have the following component form:

$$ [{\mathbf{M}}_{\mu } ] = \left[ {\begin{array}{*{20}c} {m + a_{x} } & 0 & 0 & 0 & 0 & 0 \\ 0 & {m + a_{y} } & 0 & {a_{yx} } & 0 & {a_{yz} } \\ 0 & 0 & {m + a_{z} } & 0 & {a_{zy} } & 0 \\ 0 & {a_{xy} } & 0 & {I_{x} + a_{xx} } & 0 & { - I_{xz} } \\ 0 & 0 & {a_{yz} } & 0 & {I_{y} + a_{yy} } & 0 \\ 0 & {a_{zy} } & 0 & { - I_{xz} } & 0 & {I_{x} + a_{zz} } \\ \end{array} } \right], $$
(40)
$$ \left[ {{\mathbf{M}}_{\mu }^{\Upomega } } \right] = \left[ {\begin{array}{*{20}c} 0 & { - (m + a_{x} )r} & {(m + a_{x} )q} & 0 & 0 & 0 \\ {(m + a_{y} )r} & 0 & { - (m + a_{y} )p} & 0 & 0 & 0 \\ { - (m + a_{z} )q} & {(m + a_{z} )p} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {I_{45} } & { - I_{46} } \\ 0 & 0 & 0 & { - I_{45} } & 0 & {I_{56} } \\ 0 & 0 & 0 & {I_{46} } & { - I_{56} } & 0 \\ \end{array} } \right] $$
(41)

with

$$ \begin{gathered} I_{45} = (I_{zz} + a_{zz} )r - (I_{zx} + a_{zx} )p - I_{zy} q, \hfill \\ I_{46} = (I_{yy} + a_{yy} )q - I_{yz} r - I_{yx} p, \hfill \\ I_{56} = I_{xx} + a_{xx} p - I_{xy} q - I_{xz} + a_{xz} r \hfill \\ \end{gathered} $$

and

$$ [{\mathbf{K}}] = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & { - \rho gA_{W} } & 0 & {\rho gA_{W} x_{F} } & 0 \\ 0 & 0 & 0 & { - GM_{\text{T}} gm} & 0 & 0 \\ 0 & 0 & {\rho gA_{W} x_{F} } & 0 & { - GM_{\text{L}} gm} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right] $$

where m is the structural mass, a i and a ii are the translational and rotational added masses, A W is the waterplane area, x F is the longitudinal centre of flotation, ρ is the water density, g is the gravitational acceleration, GM T is the transverse metacentric height, and GM L is the longitudinal metacentric height. The subscript characters in the mass and inertia terms follow the common notation; a single character refers to a value involved with translational motions, and two characters refer to rotational motion or to a coupling between two motion components.

The restoring force is divided into a constant part \( \left. {{\mathbf{F}}_{\text{R}} } \right|_{{t_{j} }} \) evaluated at the beginning of the time increment at t = t j , and into the change \( \left. {{\text{d}}{\mathbf{F}}_{\text{R}} } \right|_{{t_{j + 1} }} \) in the force during the increment:

$$ \left. {{\mathbf{F}}_{\text{R}} } \right|_{{t_{j} }} + \left. {{\text{d}}{\mathbf{F}}_{\text{R}} } \right|_{{t_{j + 1} }} = [{\mathbf{T}}]^{T} [{\mathbf{K}}]\begin{array}{*{20}c} {\{ {\mathbf{R}}\} } \\ {[{\varvec\varphi} ]} \\ \end{array} + [{\mathbf{K}}]\begin{array}{*{20}c} {\{ {\text{d}}{\mathbf{x}}\} } \\ {[{\text{d}}{\varvec\varphi} ]} \\ \end{array} $$
(42)

This split is necessary, as the restoring force depends on the ship’s position with respect to the inertial coordinate system given by the position vector R and Euler’s angles. The increase in the force during the time increment is still evaluated via the displacements in the local coordinate system, but because of small angular displacements the error will be negligible.

During the time increment, the matrices and vectors on the left-hand side of Eq. 39 are updated several times within the increment, while the right-hand side is kept constant.

Appendix 2: Test matrix for second and third sets

 

Test

β (deg)

Bulb

L C (m)

mA (kg)

mB (kg)

u0 (m/s)

F AC,x (N)

F AC,y (N)

ED,P (J)

201

90

1

0.82

28.5

30.5

0.87

226

25

3.91

202

90

1

0.83

28.5

30.5

0.71

179

17

2.36

203

90

1

0.83

28.5

30.5

0.38

91

13

0.75

204

90

1

0.45

28.5

30.5

0.91

300

36

6.30

205

90

1

0.48

28.5

30.5

0.38

115

6

0.95

206

90

1

0.38

28.5

30.5

0.71

221

13

3.43

207

90

1

0.80

28.5

20.5

0.90

200

27

4.2

208

90

1

0.41

28.5

20.5

0.89

229

33

4.92

301

120

1

0.37

28.5

20.5

0.87

172

47

4.20

302

120

1

0.32

28.5

20.5

0.30

59

14

0.51

303

120

1

0.3

28.5

44.5

0.84

204

52

6.50

304

120

1

0.38

28.5

44.5

0.37

89

21

1.01

305 (sliding)

145

1

0.32

28.5

20.5

0.34

44

29

0.54

306 (sliding)

145

1

0.44

28.5

20.5

0.87

115

65

3.91

307 (sliding)

145

1

0.38

28.5

44.5

0.84

118

67

5.47

308

145

1

0.34

28.5

44.5

0.28

45

27

0.52

309 (sliding)

145

3

0.46

28.5

20.5

0.87

120

86

3.19

310 (sliding)

145

2

0.44

28.5

20.5

0.88

142

94

3.19

311

120

3

0.42

28.5

20.5

0.88

217

69

4.25

312

120

2

0.41

28.5

20.5

0.86

313

104

4.64

313

60

1

0.29

28.5

20.5

0.76

177

41

3.14

314

60

1

0.32

28.5

20.5

0.36

80

16

0.81

315

60

1

0.38

28.5

44.5

0.75

202

52

4.35

316

60

1

0.4

28.5

44.5

0.43

104

24

1.17

  1. Absolute maximum values are presented for F AC,x and F AC,y
  2. m, ship mass; u0, contact velocity; ED,P, plastic deformation energy

About this article

Cite this article

Tabri, K., Varsta, P. & Matusiak, J. Numerical and experimental motion simulations of nonsymmetric ship collisions. J Mar Sci Technol 15, 87–101 (2010). https://doi.org/10.1007/s00773-009-0073-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-009-0073-2

Keywords

Navigation