Skip to main content
Log in

Comparative reliability analysis of ships under vector-load processes

  • Review Article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

An Erratum to this article was published on 21 July 2010

Abstract

This paper deals with reliability analysis of ships under vector-load processes. Failure is expressed by multiple response variables. Different methods can be used to assess failure probability, primary among them are the time-independent and out-crossing (up-crossing) rate methods. This paper describes the procedure for performing reliability analysis of ships under vector-load processes by the out-crossing rate method. Alternative methods based on piecewise linear or continuous modeling of failure surface are explored for calculating the out-crossing rate and compared. The methods are exemplified by calculating the conditional probability of a damaged double hull oil tanker under combined vertical and horizontal bending moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abrahamsen E, Nordenstrom N, Røren EMQ (1970) Design and reliability of ship structures. In: Proceedings of Spring Meeting, SNAME

  2. Mansour AE (1972) Probabilistic design concepts in ship structural safety and reliability. Trans SNAME 80:64–97

    Google Scholar 

  3. Mansour AE, Harding S, Zigelman C (1984) Implementation of reliability methods to marine structures. Trans SNAME 92:353–382

    Google Scholar 

  4. Guedes Soares C, Parunov J (2006) Structural reliability of a SUEZMAX oil tanker designed according to New Joint Tanker Project Rules. In: The 25th international conference on offshore mechanics and arctic engineering, June 4–9, Hamburg, Germany

  5. Moan T, Shu Z, Drummen I, Amlashi H (2006) Comparative reliability analysis of ships-considering different ship types and the effect of ship operations on loads. Annual Meeting (SMTC&E), SNAME, Fort Lauderdale

  6. Fang C, Das PK (2005) Survivability and reliability of damaged ships after collision and grounding. Ocean Eng 32:293–307

    Article  Google Scholar 

  7. Luis RM, Teixeira AP, Guedes Soares C (2006) Longitudinal strength reliability of a tanker accidentally grounded. Safety and reliability for managing risk. Taylor & Francis Group, London

    Google Scholar 

  8. Mano H, Kawabe H, Iwakaes K, Mitsumune N (1977) Statistical character of the demand on longitudinal strength (second report)-long term distribution of still-water bending moment. J Soc Naval Arch Jpn 142:255–263

    Google Scholar 

  9. Guedes Soares C, Moan T (1985) Uncertainty analysis and code calibration of the primary load effects in ship structures. In: Fourth international conference on structural safety and reliability, vol 3, pp 501–512

  10. Moan T, Jiao G (1988) Characteristic still-water load effects for production ships. Report MK/R 104/88, The Norwegian Institute of Technology, Trondheim, Norway

  11. Guedes Soares C (1992) Combination of primary load effects in ship structures. Prob Eng Mech 7:103–111

    Article  Google Scholar 

  12. Wang X, Moan T (1996) Stochastic and deterministic combinations of still water and wave bending moments in ships. Marine Struct 9:787–810

    Article  Google Scholar 

  13. Huang W, Moan T (2005) Combination of global still-water and wave load effects for reliability-based design of floating production, storage and offloading (FPSO) vessels. Appl Ocean Res 17:127–141

    Article  Google Scholar 

  14. Huang W, Moan T (2008) Analytical method of combining global longitudinal loads for ocean-going ships. Prob Eng Mech 23:64–75

    Article  Google Scholar 

  15. Guedes Soares C (1993) Long-term distribution of non-linear wave induced vertical bending moments. Marine Struct 6:475–483

    Article  Google Scholar 

  16. Guedes Soares C, Schellin TE (1996) Long-term distribution of non-linear wave induced vertical bending moments on a containership. Marine Struct 9:333–352

    Article  Google Scholar 

  17. Bjerager P, Løseth R, Winterstein SR, Cornell CA (1988) Reliability method for marine structures under multiple environmental load processes. In: Proceedings of the international conference on behavior of offshore structures, June, Trondheim, pp 1239–1253

  18. Melchers RE (1999) Structural reliability analysis and prediction, chap 6. Wiley, England

  19. Videiro PM (1998) Reliability based design of marine structures. Ph.D. thesis, NTNU, Trondheim

  20. Rice SO (1954) Mathematical analysis of random noise. In: Nelson Wax (ed) Selected papers and noise and stochastic processes, Dover, New York

  21. Naess A, Gaidai O (2007) The asymptotic behavior of second-order stochastic volterra series models of slow drift response. Prob Eng Mech 22:343–352

    Google Scholar 

  22. Naess A (1983) Prediction of extremes of Morison-type loading-an example of a general method. Ocean Eng 10(5):313–324

    Article  Google Scholar 

  23. Bender CM, Orszag SA (1978) Advanced mathematical methods for scientists and engineers, chap 6. McGraw-Hill, New York

  24. Vinje T (1980) Statistical distributions of hydrodynamic forces on objects in current and waves. Norwegian Marit Res 8(2):20–26

    Google Scholar 

  25. Belyaev YK (1968) On the number of exits across the boundary of a region by a vector stochastic process. Theory Prob Appl 13:320–324

    Article  Google Scholar 

  26. Ditlevsen O (1973) Structural reliability and the invariance problem. Research report no. 22, Solid Mechanics Division, University of Waterloo, Waterloo, Canada

  27. Hasofer AM (1974) The upcrossing rate of a class of stochastic processes. In: Williams EJ (ed) Studies in probability and statistics, Jerusalem Academic Press, Jerusalem, pp 153–170

  28. Veneziano D, Grigoriu M, Cornell CA (1977) Vector-process models for system reliability. J Eng Mech Div ASCE 103(3):441–460

    Google Scholar 

  29. Leira BJ (1985) Probabilistic design—a level 3 Study. STF71 A85004, SINTEF, Trondheim

  30. Leira BJ, Moan T (1987) Extremes of combined load effects for design of gravity platforms. OMAE, Houston

    Google Scholar 

  31. Wen YK, Chen H-C (1987) On fast integration for time variant structural reliability. Prob Eng Mech 2(3):156–162

    Article  Google Scholar 

  32. Moan T et al (1994) Applied design strength limit states formulations. Report of ISSC Committee V.1, In: Proceeding of 12th ISSC, St. John’s Newfoundland

  33. Jia H, Moan T (2008) Reliability analysis of oil tankers with collision damage. OMAE2008-57102

  34. IACS (2006) Common structural rules for double hull oil tankers, Appendix A, Sect. 2.3

  35. Moan T (1996) Structural reliability analysis, Lecture Notes, chap 6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huirong Jia.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00773-010-0101-2

Appendices

Appendix I: Up-crossing rate by Naess’s method for a problem with limit state defined by Eq. 29

According to Eqs. 5 and 29,

$$ H\left( {{\mathbf{Q}}(t)} \right) = \left( {{\frac{{M_{v} (t)}}{{M_{uv} }}}} \right)^{\alpha } + \left( {{\frac{{M_{h} (t)}}{{M_{uh} }}}} \right)^{\beta } = \left( {X(t)} \right)^{\alpha } + \left( {Y(t)} \right)^{\beta } \quad 0 \le X,Y \le 1 $$
(32)

where \( {\mathbf{Q}}(t) = \left\{ {X(t),Y(t)} \right\}^{T} = \left\{ {{\frac{{M_{v} (t)}}{{M_{uv} }}},{\frac{{M_{h} (t)}}{{M_{uh} }}}} \right\}^{T} \)

From Eq. 32, we can derive that

$$ \dot{H} = \alpha X^{\alpha - 1} \dot{X} + \beta Y^{\beta - 1} \dot{Y} $$
(33)

Write the mean vector of Q as μ Q and the covariance matrix Σ of \( \left( {{\mathbf{Q}}^{T} ,{\dot{\mathbf{Q}}}^{T} } \right)^{T} \) as

$$ \Upsigma = \left( {\begin{array}{*{20}c} {\Upsigma_{11} } & {\Upsigma_{12} } \\ {\Upsigma_{21} } & {\Upsigma_{22} } \\ \end{array} } \right) $$
(34)

Given \( {\mathbf{Q}} = {\mathbf{q}} = (x,y)^{T} \), the joint PDF of \( \dot{Q} \), is multivariate normal with mean value \( {\varvec{\upmu}}_{c} = {\varvec{\Upsigma}}_{21} {\varvec{\Upsigma}}_{11}^{ - 1} ({\mathbf{q}} - {\varvec{\upmu}}_{Q} ) = (\mu_{1} ,\mu_{2} )^{T} \) and covariance matrix \( {\varvec{\Upxi}} = {\varvec{\Upsigma}}_{22} - {\varvec{\Upsigma}}_{21} {\varvec{\Upsigma}}_{11}^{ - 1} {\varvec{\Upsigma}}_{12} . \) Hence the statistics of \( \{ \dot{H}|{\mathbf{Q}} = {\mathbf{q}}\} \) are given as:

$$ \mu = \alpha x^{\alpha - 1} \mu_{1} + \beta y^{\beta - 1} \mu_{2} = {\mathbf{p}}^{T} {\varvec{\upmu}}_{c} $$
(35)
$$ \sigma^{2} = \alpha^{2} x^{2(\alpha - 1)} \Upxi_{11} + \beta^{2} y^{2(\beta - 1)} \Upxi_{22} + \alpha \beta x^{\alpha - 1} y^{\beta - 1} \left( {\Upxi_{12} + \Upxi_{21} } \right) $$
(36)

where \( {\mathbf{p}}^{T} = \left[ {\alpha x^{\alpha - 1} ,\beta y^{\beta - 1} } \right] \)

Furthermore,

$$ x(y,h) = (h - y^{\beta } )^{1/\alpha } $$
(37)
$$ \left| {{\frac{\partial x}{\partial h}}} \right| = {\frac{1}{\alpha }}(h - y^{\beta } )^{{{\frac{1}{\alpha }} - 1}} = {\frac{1}{\alpha }}\left[ {x(y,h)} \right]^{1 - \alpha } $$
(38)

Equation 20 becomes:

$$ v\left( \xi \right) = \int\limits_{{y_{l} (\xi )}}^{{y_{u} (\xi )}} {{\frac{1}{\alpha }}\tilde{x}^{1 - \alpha } \cdot \left[ {\tilde{\sigma }\phi \left( {{\frac{{\tilde{\mu }}}{{\tilde{\sigma }}}}} \right) + \tilde{\mu }\Upphi \left( {{\frac{{\tilde{\mu }}}{{\tilde{\sigma }}}}} \right)} \right] \cdot {\frac{1}{{2\pi \sqrt {\left| {{\varvec{\Upsigma}}_{11} } \right|} }}}\exp \left( { - {\frac{1}{2}}({\tilde{\mathbf{q}}} - {\varvec{\upmu}}_{Q} )^{T} {\varvec{\Upsigma}}_{11}^{ - 1} ({\tilde{\mathbf{q}}} - {\varvec{\upmu}}_{Q} )} \right){\text{d}}y} $$
(39)

where ~ indicates that \( x = x(y,\xi ). \) Set

\( f_{1} = {\frac{1}{\alpha }}\tilde{x}^{1 - \alpha } ,\;f_{2} = \left[ {\tilde{\sigma }\phi \left( {{\frac{{\tilde{\mu }}}{{\tilde{\sigma }}}}} \right) + \tilde{\mu }\Upphi \left( {{\frac{{\tilde{\mu }}}{{\tilde{\sigma }}}}} \right)} \right],f_{3} = {\frac{1}{{2\pi \sqrt {\left| {{\varvec{\Upsigma}}_{11} } \right|} }}}\exp \left( { - {\frac{1}{2}}({\tilde{\mathbf{q}}} - {\varvec{\upmu}}_{Q} )^{T} {\varvec{\Upsigma}}_{11}^{ - 1} ({\tilde{\mathbf{q}}} - {\varvec{\upmu}}_{Q} )} \right), \) and f t  = f1 · f2 · f3

$$ v\left( \xi \right) = \int\limits_{{y_{l} (\xi )}}^{{y_{u} (\xi )}} {f_{t} {\text{d}}y} = \int\limits_{{y_{l} (\xi )}}^{{y_{u} (\xi )}} {f_{1} \cdot f_{2} \cdot f_{3} {\text{d}}y} $$
(40)

For the limit surface given in Eq. 29, the out-crossing rate is given by Eq. 39 with level ξ = 1. The integration in Eq. 39 could be evaluated numerically. However, an asymptotic evaluation for high level mean up-crossing can also be achieved by the generalized Laplace method.

Appendix II: asymptotic evaluation of high level mean up-crossing rate defined by Eq. 39

To calculate the asymptotic mean up-crossing rate by the Laplace method, Eq. 39 should be simplified first. The following variables are defined, \( c(y) = {\frac{1}{2}}\left( {{\tilde{\mathbf{q}}} - {\varvec{\upmu}}_{Q} } \right)^{T} {\varvec{\Upsigma}}_{11}^{ - 1} \left( {{\tilde{\mathbf{q}}} - {\varvec{\upmu}}_{Q} } \right),a(y) = \alpha \tilde{x}^{\alpha - 1} \) and \( b(y) = {\frac{{\tilde{\sigma }}}{{\text{cov} (\dot{X},Y)a(y)}}}, \) then

$$ c' = {\frac{{{\text{d}}c(y)}}{{{\text{d}}y}}} = \left( {{\frac{{{\text{d}}{\tilde{\mathbf{q}}}}}{{{\text{d}}y}}}} \right)^{T} {\varvec{\Upsigma}}_{11}^{ - 1} ({\tilde{\mathbf{q}}} - {\varvec{\upmu}}_{Q} ) = \left[ { - {\frac{{\beta y^{\beta - 1} }}{{\alpha \tilde{x}^{\alpha - 1} }}},1} \right]{\varvec{\Upsigma}}_{11}^{ - 1} ({\tilde{\mathbf{q}}} - {\varvec{\upmu}}_{Q} ) $$
(41)
$$ \tilde{\mu } = {\tilde{\mathbf{p}}}^{T} {\varvec{\Upsigma}}_{21} {\varvec{\Upsigma}}_{11}^{ - 1} ({\tilde{\mathbf{q}}} - {\varvec{\upmu}}_{Q} ) = \left[ {\alpha \tilde{x}^{\alpha - 1} ,\beta y^{\beta - 1} } \right]\text{cov} (\dot{X},Y)\left( {\begin{array}{*{20}c} 0 & 1 \\ { - 1} & 0 \\ \end{array} } \right){\varvec{\Upsigma}}_{11}^{ - 1} ({\tilde{\mathbf{q}}} - {\varvec{\upmu}}_{Q} ) = \text{cov} (\dot{X},Y)a(y)c' $$
(42)
$$ v = {\frac{{\text{cov} (\dot{X},Y)}}{{2\pi \sqrt {\left| {{\varvec{\Upsigma}}_{11} } \right|} }}}\int\limits_{{y_{l} (\xi )}}^{{y_{u} (\xi )}} {\left[ {b\phi \left( {{\frac{c'}{b}}} \right) + c'\Upphi \left( {{\frac{c'}{b}}} \right)} \right] \cdot \exp ( - c){\text{d}}y} $$
(43)

Integration by parts on the second term of Eq. 43 gives:

$$ \begin{aligned} v & = {\frac{{\text{cov} \left( {\dot{X},Y} \right)}}{{2\pi \sqrt {\left| {{\varvec{\Upsigma}}_{11} } \right|} }}}\left( {\int_{{y_{l} (\xi )}}^{{y_{u} (\xi )}} {\left[ {b + \left( {{\frac{c'}{b}}} \right)^{'} } \right]\phi \left( {{\frac{c'}{b}}} \right)\exp ( - c){\text{d}}y} - \left[ {\Upphi \left( {{\frac{c'}{b}}} \right) \cdot \exp ( - c)} \right]_{{y_{l} (\xi )}}^{{y_{u} (\xi )}} } \right) \\ & = {\frac{{\text{cov} \left( {\dot{X},Y} \right)}}{{2\pi \sqrt {\left| {{\varvec{\Upsigma}}_{11} } \right|} }}}\left( {{\frac{1}{{\sqrt {2\pi } }}}\int_{{y_{l} (\xi )}}^{{y_{u} (\xi )}} {\left( {b + {\frac{c''}{b}} - {\frac{c'b'}{{b^{2} }}}} \right)\cdot\exp \left( { - \left( {c + {\frac{1}{2}}\left( {{\frac{c'}{b}}} \right)^{2} } \right)} \right){\text{d}}y} - \left[ {\Upphi \left( {{\frac{c'}{b}}} \right) \cdot \exp ( - c)} \right]_{{y_{l} (\xi )}}^{{y_{u} (\xi )}} } \right) \\ \end{aligned} $$
(44)

Set \( f(y,\xi ) = b + {\frac{c''}{b}} - {\frac{c'b'}{{b^{2} }}} \) and \( k(y,\xi ) = c + {\frac{1}{2}}\left( {{\frac{c'}{b}}} \right)^{2} \). The integration in Eq. 44 can be calculated by the Laplace method which gives the asymptotic evaluation of the integration involving a large quantity ξ as following:

$$ \int\limits_{{y_{l} }}^{{y_{u} }} {f(y,\xi )\exp ( - k(y,\xi )){\text{d}}y} = \left\{ {\begin{array}{*{20}c} {\sqrt {2\pi } f(y_{0} ,\xi )\exp ( - k(y_{0} ,\xi ))/\sqrt {k''(y_{0} ,\xi )} \quad y_{l} \le y_{0} \le y_{u} ,k'(y_{0} ,\xi ) = 0} \\ {f(y_{l} ,\xi )\exp ( - k(y_{l} ,\xi ))/k'(y_{l} ,\xi )\quad y_{0} = y_{l} ,k'(y_{0} ,\xi ) \ne 0} \\ { - f(y_{u} ,\xi )\exp ( - k(y_{u} ,\xi ))/k'(y_{u} ,\xi )\quad y_{0} = y_{u} ,k'(y_{0} ,\xi ) \ne 0} \\ \end{array} } \right. $$
(45)

where y 0 is found numerically to give the global minimum of k(yξ) within the integration interval [y l y u ] and f(y 0ξ) ≠ 0. Notice that

$$ k'(y,\xi ) = {\frac{c'(y,\xi )}{b(y,\xi )}}f(y,\xi ) $$
(46)

If c(yξ) and k(yξ) have the same global minimum, the right hand side of Eq. 45 becomes:

$$ \left\{ {\begin{array}{*{20}l} {\left( {b(y_{0} ,\xi ) + {\frac{{c''(y_{0} ,\xi )}}{{b(y_{0} ,\xi )}}}} \right)\exp \left( { - c(y_{0} ,\xi )} \right)/\sqrt {c''(y_{0} ,\xi ) + \left( {c''(y_{0} ,\xi )/b(y_{0} ,\xi )} \right)^{2} } \quad y_{l} \le y_{0} \le y_{u} ,c'(y_{0} ,\xi ) = 0} \\ {{\frac{1}{{\sqrt {2\pi } }}}\;b\left( {y_{l} ,\xi } \right)\exp ( - k(y_{l} ,\xi ))/c'\left( {y_{l} ,\xi } \right)\quad y_{0} = y_{l} ,c'\left( {y_{0} ,\xi } \right) \ne 0} \\ { - {\frac{1}{{\sqrt {2\pi } }}}\;b\left( {y_{u} ,\xi } \right)\exp \left( { - k(y_{u} ,\xi )} \right)/c'\left( {y_{u} ,\xi } \right)\quad y_{0} = y_{u} ,c'(y_{0} ,\xi ) \ne 0} \\ \end{array} } \right. $$
(47)

Then the asymptotic mean up-crossing rate can be calculated using Eqs. 44 and 47.

About this article

Cite this article

Jia, H., Moan, T. Comparative reliability analysis of ships under vector-load processes. J Mar Sci Technol 14, 485–498 (2009). https://doi.org/10.1007/s00773-009-0061-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-009-0061-6

Keywords

Navigation