Skip to main content

Advertisement

Log in

Semiautomatische Centerline-Analyse zur Planung endovaskulärer Rekonstruktionen des Aortenbogens

Semiautomated centerline analysis for planning endovascular repair of the aortic arch

  • Leitthema
  • Published:
Gefässchirurgie Aims and scope Submit manuscript

Zusammenfassung

Aortenerkrankungen, die den Aortenbogen involvieren, können dank der Etablierung von so genannten Hybridverfahren mittlerweile einer endovaskulären Therapie zugeführt werden. Da die individuelle Pathomorphologie ein wesentliches Kriterium für die Indizierung eines solchen Eingriffs darstellt, sind radiologische Auswertungstechniken erforderlich, die eine präzise Quantifizierung komplexer Aortenläsionen ermöglichen. Die Centerline-Analyse ist ein semiautomatisches Bildnachverarbeitungsverfahren, das die geometrische Mittelachse von Gefäßen bestimmt sowie Querschnitts- und Distanzmessungen entlang dieser Mittelachse erlaubt. Dadurch lassen sich umfassende Informationen gewinnen, die für die Therapiestratifizierung, Patientenselektion und Therapieplanung von Bedeutung sind. Dieser Übersichtsartikel soll das Potenzial der Centerline-Analyse für die präoperative Evaluierung von Pathologien des Aortenbogens anhand von Fallbeispielen aufzeigen und die Vor- und Nachteile dieser Technik kritisch diskutieren.

Abstract

Because vascular surgical techniques are constantly being refined and hybrid procedures are developing, aortic lesions involving the aortic arch are increasingly being treated with endovascular aortic repair. Since individual pathomorphology represents a crucial criterion regarding the applicability of endovascular techniques, sophisticated evaluation of radiological imaging is necessary to gain quantitative anatomical information. Centerline analysis represents a semiautomated image postprocessing algorithm that calculates the geometric vessel center and allows diameter as well as distance measurements along its course. Thus, data provided by centerline analysis are beneficial for therapy stratification, patient selection, and treatment planning. Using clinical case reports, this review aims to demonstrate the potential of centerline analysis for preoperative evaluation of aortic arch lesions and critically discusses the advantages and disadvantages of this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Baldwin ZK, Chuter TA, Hiramoto JS et al (2008) Double-barrel technique for endovascular exclusion of an aortic arch aneurysm without sternotomy. J Endovasc Ther 15(2):161–165

    Article  PubMed  Google Scholar 

  2. Behrendt FF, Bruners P, Keil S et al (2008) Impact of different vein catheter sizes for mechanical power injection in ct: In vitro evaluation with use of a circulation phantom. Cardiovasc Intervent Radiol Epub ahead of print

  3. Böckler D, Hylik-Dürr A, von Tengg-Kobligk H et al (2007) Klinische Anforderungen an die Bildgebung der Aorta. Radiologe 47(11):962–973

    Article  PubMed  Google Scholar 

  4. Böckler D, Kotelis D, Geisbüsch P et al (2008) Hybrid procedures for thoracoabdominal aortic aneurysms and chronic aortic dissections – a single center experience in 28 patients. J Vasc Surg 47(4):724–732

    Article  PubMed  Google Scholar 

  5. Böckler D, Schumacher H, Ganten M et al (2006) Complications after endovascular repair of acute symptomatic and chronic expanding Stanford type B aortic dissections. J Thorac Cardiovasc Surg 132(2):361–368

    Article  PubMed  Google Scholar 

  6. Böckler D, Schumacher H, von Tengg-Kobligk H et al (2005) Endovaskuläre Therapie akuter und chronischer Stanford-B-Dissektionen. Gefässchirurgie 10(4):293–313

    Article  Google Scholar 

  7. Boskamp T, Rinck D, Link F et al (2004) New vessel analysis tool for morphometric quantification and visualization of vessels in CT and MR imaging data sets. Radiographics 24(1):287–297

    Article  PubMed  Google Scholar 

  8. Calhoun PS, Kuszyk BS, Heath DG et al (1999) Three-dimensional volume rendering of spiral CT data: theory and method. Radiographics 19(3):745–764

    PubMed  CAS  Google Scholar 

  9. Chuter TA, Schneider DB, Reilly LM et al (2003) Modular branched stent graft for endovascular repair of aortic arch aneurysm and dissection. J Vasc Surg 38(4):859–863

    Article  PubMed  Google Scholar 

  10. Diehm N, Herrmann P, Dinkel HP (2004) Multidetector CT angiography versus digital subtraction angiography for aortoiliac length measurements prior to endovascular AAA repair. J Endovasc Ther 11(5):527–534

    Article  PubMed  Google Scholar 

  11. Erbel R, Alfonso F, Boileau C et al (2001) Diagnosis and management of aortic dissection. Eur Heart J 22(18):1642–1681

    Article  PubMed  CAS  Google Scholar 

  12. Fattori R, Napoli G, Lovato L et al (2003) Descending thoracic aortic diseases: stent-graft repair. Radiology 229(1):176–183

    Article  PubMed  Google Scholar 

  13. Fleischmann D (2005) How to design injection protocols for multiple detector-row CT angiography (MDCTA). Eur Radiol 15(Suppl 5):E60–E65

    Article  PubMed  Google Scholar 

  14. Ganten MK, Weber TF, von Tengg-Kobligk H et al (2008) Motion characterization of aortic wall and intimal flap by ECG-gated CT in patients with chronic B-dissection. Eur J Radiol (Epub ahead of print)

  15. Geisbüsch P, Kotelis D, Weber TF et al (2008) Early and midterm results after endovascular stent graft repair of penetrating aortic ulcers. J Vasc Surg 48(6):1361–1368

    Article  PubMed  Google Scholar 

  16. Geisbüsch P, Schumacher H, Hyhlik-Dürr A et al (2008) Hybridverfahren zur Therapie aortaler Bogenpathologien. Gefässchirurgie 13(5):367–380

    Article  Google Scholar 

  17. Heye T, Karck M, Richter G et al (2007) Visualization of entry and re-entry tears in a complex type A aortic dissection by 64-slice dual-source computer tomography. Eur J Cardiothorac Surg 32(6):935

    PubMed  Google Scholar 

  18. Hopper KD, Pierantozzi D, Potok PS et al (1996) The quality of 3D reconstructions from 1.0 and 1.5 pitch helical and conventional CT. J Comput Assist Tomogr 20(5):841–847

    Article  PubMed  CAS  Google Scholar 

  19. Johnson TR, Nikolaou K, Becker A et al (2008) Dual-source CT for chest pain assessment. Eur Radiol 18(4):773–780

    Article  PubMed  Google Scholar 

  20. Karck M, Kamiya H (2008) Progress of the treatment for extended aortic aneurysms is the frozen elephant trunk technique the next standard in the treatment of complex aortic disease including the arch? Eur J Cardiothorac Surg 33(6):1007–1013

    Article  PubMed  Google Scholar 

  21. Kazui T, Yamashita K, Washiyama N et al (2007) Aortic arch replacement using selective cerebral perfusion. Ann Thorac Surg 83(2):S796–S798; discussion 824–731

    Article  PubMed  Google Scholar 

  22. Langlois S, Desvignes M, Constans JM et al (1999) MRI geometric distortion: a simple approach to correcting the effects of non-linear gradient fields. J Magn Reson Imaging 9(6):821–831

    Article  PubMed  CAS  Google Scholar 

  23. Lell MM, Anders K, Uder M et al (2006) New techniques in CT angiography. Radiographics 26 (Suppl 1):S45–S62

    Article  PubMed  Google Scholar 

  24. LeMaire SA, Carter SA, Coselli JS (2006) The elephant trunk technique for staged repair of complex aneurysms of the entire thoracic aorta. Ann Thorac Surg 81(5):1561–1569; discussion 1569

    Article  PubMed  Google Scholar 

  25. Luccichenti G, Cademartiri F, Pezzella FR et al (2005) 3D reconstruction techniques made easy: know-how and pictures. Eur Radiol 15(10):2146–2156

    Article  PubMed  Google Scholar 

  26. Meyer BC, Ribbe C, Kruschewski M et al (2005) Becken-Bein-CT-Angiographie mit der 16-Zeilen-Multislice-Technik: Kontrastmittel-Enhancement und Bildqualitat unter Einsatz eines standardisierten Untersuchungsprotokolls. Fortschr Roentgenstr 177(11):1562–1570

    Article  CAS  Google Scholar 

  27. Nienaber CA, Kische S, Ince H (2007) Thoracic aortic stent-graft devices: problems, failure modes and applicability. Semin Vasc Surg 20(2):81–89

    Article  PubMed  Google Scholar 

  28. Primak AN, McCollough CH, Bruesewitz MR et al (2006) Relationship between noise, dose and pitch in cardiac multi-detector row CT. Radiographics 26(6):1785–1794

    Article  PubMed  Google Scholar 

  29. Prokop M (2005) New challenges in MDCT. Eur Radiol 15(Suppl 5):E35–E45

    Article  PubMed  Google Scholar 

  30. Rengier F, Weber TF, Giesel FL et al (2009) Centerline analysis of aortic CT angiographies: benefits and limitations. AJR Am J Roentgenol (in press)

  31. Riesenman PJ, Tamaddon HS, Farber MA (2008) Surgical bypass procedures to facilitate endovascular repair of aortic arch pathology. J Cardiovasc Surg (Torino) 49(4):461–469

    Google Scholar 

  32. Sayed S, Thompson MM (2005) Endovascular repair of the descending thoracic aorta: evidence for the change in clinical practice. Vascular 13(3):148–157

    Article  PubMed  Google Scholar 

  33. Schlosser FJ, Mojibian HR, Dardik A et al (2008) Simultaneous sizing and preoperative risk stratification for thoracic endovascular aneurysm repair: role of gated computed tomography. J Vasc Surg 48(3):561–570

    Article  PubMed  Google Scholar 

  34. Schreiner S, Paschal CB, Galloway RL (1996) Comparison of projection algorithms used for the construction of maximum intensity projection images. J Comput Assist Tomogr 20(1):56–67

    Article  PubMed  CAS  Google Scholar 

  35. Schumacher H, Böckler D, von Tengg-Kobligk H et al (2006) Acute traumatic aortic tear: open versus stent-graft repair. Semin Vasc Surg 19(1):48–59

    Article  PubMed  Google Scholar 

  36. Schumacher H, von Tengg-Kobligk H, Ostovic M et al (2006) Hybrid aortic procedures for endoluminal arch replacement in thoracic aneurysms and type B dissections. J Cardiovasc Surg (Torino) 47(5):509–517

    Google Scholar 

  37. Shin H, Chavan A, Witthus F et al (2001) Precise determination of aortic length in patients with aortic stent grafts: in vivo evaluation of a thinning algorithm applied to CT angiography data. Eur Radiol 11(5):733–738

    Article  PubMed  CAS  Google Scholar 

  38. Szeto WY, McGarvey M, Pochettino A et al (2008) Results of a new surgical paradigm: endovascular repair for acute complicated type B aortic dissection. Ann Thorac Surg 86(1):87–93; discussion 93–84

    Article  PubMed  Google Scholar 

  39. van Prehn J, Vincken KL, Muhs BE et al (2007) Toward endografting of the ascending aorta: insight into dynamics using dynamic cine-CTA. J Endovasc Ther 14(4):551–560

    Article  Google Scholar 

  40. von Tengg-Kobligk H, Weber TF, Rengier F et al (2007) Aktuelle Bildnachverarbeitung der aortalen CTA und MRA. Radiologe 47(11):1003–1011

    Article  Google Scholar 

  41. Weber TF, Ganten MK, Böckler D et al (2009) Assessment of thoracic aortic conformational changes by Assessment of thoracic aortic conformational changes by four-dimensional computed tomography angiography in patients with chronic aortic dissection type b. Eur Radiol 19(1):245–253

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. von Tengg-Kobligk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, T., Geisbüsch, P., Rengier, F. et al. Semiautomatische Centerline-Analyse zur Planung endovaskulärer Rekonstruktionen des Aortenbogens. Gefässchirurgie 14, 80–91 (2009). https://doi.org/10.1007/s00772-008-0658-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00772-008-0658-9

Schlüsselwörter

Keywords

Navigation