Skip to main content
Log in

Presentation of differential laser-induced fluorimetry as a reference measurement procedure for determination of total uranium content in ores and similar matrices

  • Practitioner's Report
  • Published:
Accreditation and Quality Assurance Aims and scope Submit manuscript

Abstract

The metrological principle of ‘differential technique in laser-induced fluorimetry’ analysis is discussed and recommended as a reference measurement procedure for determination of total uranium content in ores and similar matrices. The estimated relative expanded uncertainty values obtained for uranium content in standard IAEA samples are, S 1, 0.04 g/kg, S 2, 0.06 g/kg, S 3, 0.04 g/kg, and for S 4, 0.10 g/kg, respectively. These low uncertainty values obtained for uranium show high metrological quality of differential technique. This reference measurement procedure guarantees the quality of an analytical result (accuracy, high precision, reliability, comparability, and traceability). Laser-induced fluorimetry will be useful for the analysis of uranium in ores, certification of reference materials, borehole core assay, and other diverse applications in nuclear fuel cycle. Differential technique in spectrophotometry/laser fluorimetry has inherent high metrological quality. In principle, laser-induced fluorimetry is an ideal technique for the very accurate determination of uranium by the use of appropriate fluorescence-enhancing reagents and methodology depending upon the concentration of uranium and sample matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Rathore DPS (2008) Talanta 77:9–20 and references cited therein

    Google Scholar 

  2. Uranium in Drinking-water, Background document for development of WHO Guidelines for Drinking-water Quality, WHO/SDE/WSH/03.04/118. (http://www.who.int/water_sanitation_health)

  3. Chidambaram R, Ganguly C (1996) Curr Sci 70:21–35

    CAS  Google Scholar 

  4. Brown RJC, Milton MJT (2007) Chem Soc Rev 36:904–913 and references cited therein

    Google Scholar 

  5. Brown RJC, Milton MJT (2007) IEEE Trans Instrum Meas 56:280–283

    Article  Google Scholar 

  6. Lindstrom RM, Greenberg RR (2001) J Nucl Radiochem Sci 2:R1–R4

    Google Scholar 

  7. Polkowska-Motrenko H, Danko B, Dybczynski R (2005) Chem Anal 50:1–13

    Google Scholar 

  8. Dybczynski R, Danko B, Polkowska-Motrenko H, Samczynski Z (2007) Talanta 71:529–536 and references cited therein

    Google Scholar 

  9. Park K, Kang N, Cho K, Lee J (2008) Appl Radiat Isot 66:1913–1915

    Google Scholar 

  10. Bode P, Greenberg RR, de Nadai Fernandes EA (2009) Chimia 63:1–3

    Article  Google Scholar 

  11. Kadis R (2004) Talanta 64:167–173

    Article  CAS  Google Scholar 

  12. Wampfler B, Rosslein M (2009) Talanta 78:113–119

    Article  CAS  Google Scholar 

  13. De Bièvre P (2010) Accred Qual Assur 15:657–658

    Article  Google Scholar 

  14. De Bièvre P (2011) Accred Qual Assur 16:61–62

    Article  Google Scholar 

  15. BIPM, IEC, IFCC, ILAC, IUPAC, IUPAP, ISO, OIML (2008) The international vocabulary of metrology-basic and general concepts and associated terms (VIM), 3 edn. JCGM 200:2008

  16. De Bièvre P, Dybkaer R, Fajgelj A, Hibbert DB (2011) Pure Appl Chem ASAP. doi:10.1351/PAC-REP-07-09-39

  17. Meyer VR (2007) J Chromatogr A 1158:15–24

    Article  CAS  Google Scholar 

  18. Taylor P, Kipphardt H, De Bièvre P (2001) Accred Qual Assur 6:103–106

    Article  Google Scholar 

  19. Hulanicki A (1995) Pure Appl Chem 67:1905–1911 and references cited therein

  20. Tanaka H, Dasgupta PK, Huang J (2000) Anal Chem 72:4713–4720

    Article  CAS  Google Scholar 

  21. Jo KD, Dasgupta PK (2003) Talanta 60:131–137

    Article  CAS  Google Scholar 

  22. Gros N (2005) Talanta 65:907–912

    Article  CAS  Google Scholar 

  23. Prados-Rosales RC, Luque-Garcia JL, Luque de Castro MD (2003) Anal Chim Acta 480:181–192

    Article  CAS  Google Scholar 

  24. Rathore DPS, Tarafder PK, Kayal M, Kumar M (2001) Anal Chim Acta 434:201 208 and references cited therein

  25. Rathore DPS, Kumar M (2004) Talanta 62:343–349

    Article  CAS  Google Scholar 

  26. Rathore DPS (2007) Explor Res At Miner 17:145–149

    Google Scholar 

  27. Tarafder PK, Kunkal L, Murugan P, Rathore DPS (2002) J Radioanal Nucl Chem 253:135–142

    Article  CAS  Google Scholar 

  28. Deniau H, Decambox P, Mauchien P, Moulin C (1993) Radiochim Acta 61:23–28

    CAS  Google Scholar 

  29. Moulin C, Decambox P, Moulin V, Decaillon JG (1995) Anal Chem 67:348–353

    Article  CAS  Google Scholar 

  30. IAEA’s programme in analytical quality control services, IUPAC (1971) Commission on radioanalytical chemistry and nuclear materials. Pure Appl Chem 27: 291-294. doi:10.1351/pac197127010291

  31. Marczenko Z (1986) Separation and spectrophotometric determination of elements, chapter 2. Ellis Horwood Ltd, NY, p 66

  32. Rathore DPS (2007) Assigning true value of trace elements in certified reference materials- an urgent necessity. In: Proceedings of national symposium on the role of analytical instruments in characterisation and quantification of materials (AICQOM-2007), pp 165–170

  33. King B (2002) The selection and use of reference materials. A basic guide for laboratories and accreditation bodies, EEE/RM/062rev3

  34. BDH (1995) Laboratory supplies catalogue (Merck), pp 4–571

  35. Batista E, Pinto L, Filipe E, Van der Veen AMH (2007) Measurement 40:338–342

    Article  Google Scholar 

  36. Manual for bioavailability and bioequivalence practices, volume II, module1: micropipettes. www.dmsc.moph.go.th/webroot/crc/km/BE-vol.2_eng.pdf

  37. http://www.helcom.fi/groups/monas/CombineManual/PartB/en_GB/main. ANNEX4: Technical note on measurement uncertainty and reference cited therein

  38. Ellison SLR, Rosslein M, Williams A (2000) EURACHEM/CITAC GUIDE CG 4, quantifying uncertainty in analytical measurement, 2nd edn. QUAM:1, pp 100

  39. Buffler A, Allie S, Lubben F (2008) Phys Teach 46:539–543

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank Director, AMD, for his kind permission to publish this work. Authors thank to the reviewers for their invaluable comments and suggestions to improve the manuscript in the present form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. S. Rathore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rathore, D.P.S., Kumar, M. & Tarafder, P.K. Presentation of differential laser-induced fluorimetry as a reference measurement procedure for determination of total uranium content in ores and similar matrices. Accred Qual Assur 17, 75–84 (2012). https://doi.org/10.1007/s00769-011-0838-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00769-011-0838-2

Keywords

Navigation