Skip to main content
Log in

Dimethylsulfone as a universal standard for analysis of organics by QNMR

  • General Paper
  • Published:
Accreditation and Quality Assurance Aims and scope Submit manuscript

Abstract

Quantitative nuclear magnetic resonance (QNMR) is a primary analytical method which allows the use of a standard not directly related to the target analyte. This could allow the introduction of a single universal reference material (URM) to which all other organic standard reference materials/certified reference materials may be compared. Dimethylsulfone is a simple substance that fulfils all criteria necessary as the URM to which the QNMR analysis of all other organic substances may be referenced and hence we propose this as a candidate for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pauli GF (2001) Phytochem Anal 12:28–42

    Article  CAS  PubMed  Google Scholar 

  2. Wells RJ, Cheung J (2001) Quantitative analysis of technical grade agrochemicals by high field 1H NMR spectroscopy. The Chemistry Preprint Server CPS:analchem/0103002

    Google Scholar 

  3. Wells RJ, Hook JM, Al-Deen TS, Hibbert DB (2002) J Agric Food Chem 50:3366–3374

    Google Scholar 

  4. Kasler F (1973) Quantitative analysis by NMR spectroscopy. Academic, London; Rackham DM (1976) Talanta 23:269–274

    Google Scholar 

  5. Rabenstein D, Keire DA (1991) Quantitative chemical analysis by NMR. In: Popov AI, Hallenga K (eds) Modern NMR techniques and their application in chemistry, vol. 11. Dekker, New York, pp 323–369

  6. Holzgrabe U, Diehl BWK, Wawer I (1998) J Pharm Biomed Anal 17:557–616

    Article  CAS  PubMed  Google Scholar 

  7. Jancke H (1998) NMR spectroscopy as a primary analytical method. CCQM Rep 98(2):1–12

    Google Scholar 

  8. Al-Deen TS, Hibbert DB, Hook JM, Wells RJ (2002) Anal Chim Acta 474:125–135

    Article  Google Scholar 

  9. Maniara G, Rajamoorthi K, Rajanand S, Stockton GW (1998) Anal Chem 70:4921–4928 [and references cited therein]

    Article  CAS  Google Scholar 

  10. Jones C, Lemercinier X (2002)J Pharm Biomed Anal 30:1233–1247

    Article  CAS  PubMed  Google Scholar 

  11. Forshed J, Andersson FO, Jacobsson SP (2002)J Pharm Biomed Anal 29:495–505

    Article  CAS  PubMed  Google Scholar 

  12. Meusinger R (1999) Anal Chim Acta 391:277–288

    CAS  Google Scholar 

  13. Griffiths L, Irvine AM (1998) Analyst 123:1061–1068

    Article  CAS  Google Scholar 

  14. Clarke D (1997) J Chem Ed 74:1464–1465

    CAS  Google Scholar 

  15. Larive CK, Jayawickrama D, Orfi L (1991) Appl Spectros 51:1531

    Article  Google Scholar 

  16. Henderson TJ (2002) Anal Chem 74:191–198

    Article  CAS  PubMed  Google Scholar 

  17. Spyros A, Dais P (2000) J Agric Food Chem 48:802–805

    Google Scholar 

  18. Gard DR, Burquin JC, Gard JK (1992) Anal Chem 64:557–561

    CAS  Google Scholar 

  19. Slahck SC (1990) J Assoc Off Anal Chem 73:638–640

    CAS  Google Scholar 

  20. Lenz EM, Wilson ID, Wright B, Partridge EA, Rodgers CT, Haycock PR, Lindon JC, Nicholson JK (2002) J Pharm Biomed Anal 28:31–43

    Article  CAS  PubMed  Google Scholar 

  21. Navratliova H (2001) Magn Reson Chem 39:727–730

    Article  Google Scholar 

  22. Ahvazi BC, Crestini C, Argyropoulos DS (1999) J Agric Food Chem 47:190–201

    Google Scholar 

  23. Adzes HT, Peters GJ, Noordhuis P, Vermorken JB (1993) Anal Biochem 214:25–30

    Article  PubMed  Google Scholar 

  24. Vlahov G, Schiavone C, Simone N (2001) Magn Reson Chem 39:689–695

    Article  CAS  Google Scholar 

  25. Xia Z, Akim LG, Argyropoulos DS (2001) J Agric Food Chem 49:3573–3578

    Article  CAS  PubMed  Google Scholar 

  26. Lefevre JW, Silveira A (2000) J Chem Ed 77:83–85 [and references cited therein]

    CAS  Google Scholar 

  27. Lonnon DG, Hook JM (2003) Anal Chem 75:4659–4666

    Article  CAS  Google Scholar 

  28. Derome AE (1989) Modern NMR techniques for chemistry research. Pergamon, New York, pp 168–172

  29. Sanders JKM, Hunter BK (1990) Modern NMR spectroscopy: a guide for chemists, Chap. 3., Oxford University Press, Oxford, pp 61–65

    Google Scholar 

  30. Saed Al-Deen T, Hibbert DB, Hook JM, Wells RJ (2004) Accred Qual Assur 9: 55–63

    Article  Google Scholar 

  31. Harris RK, Mann BE (eds) (1976) QNMR and the periodic table. Academic, London

Download references

Acknowledgements

We wish to thank Dr. G. Ball for fruitful discussions, Mrs H. Stender for expert assistance obtaining NMR spectra, Dr. L. Besley of the Australian National Measurement Laboratory for the measurements of DMSO2 by DSC and Prof. D.B. Hibbert for statistical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Wells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wells, R.J., Cheung, J. & Hook, J.M. Dimethylsulfone as a universal standard for analysis of organics by QNMR. Accred Qual Assur 9, 450–456 (2004). https://doi.org/10.1007/s00769-004-0779-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00769-004-0779-0

Keywords

Navigation