Skip to main content
Log in

Spektrale Computertomographie in der onkologischen Diagnostik

Spectral computed tomography in cancer diagnostics

  • Leitthema
  • Published:
Die Onkologie Aims and scope

Zusammenfassung

Hintergrund

Seit nahezu 2 Jahrzehnten sind spektrale Computertomographie(CT)-Systeme im Einsatz in der klinischen Diagnostik. Trotz der Verfügbarkeit der 2‑Spektren-CT sind die Anwendungen i. Allg. und im Bereich der onkologischen Diagnostik noch limitiert. Die 2‑Spektren-CT hat bislang noch keinen Eingang in onkologische Leitlinien gefunden. Diese Übersichtsarbeit erörtert die zugrunde liegende CT-Technologie mit ihren Stärken und Schwächen und zeigt dann anhand einer selektiven Literaturrecherche Anwendungsmöglichkeiten der 2‑Spektren-CT in der onkologischen Diagnostik auf.

Ergebnisse

Bis vor Kurzem war die Spektral-CT gleichzusetzen mit der 2‑Spektren-CT (Dual-Energy-CT, DECT). Die CT-Systeme basieren darauf, dass unterschiedliche Röntgenspektren den Detektor erreichen, was beispielsweise durch den Einsatz unterschiedlicher Röhrenspannungen oder Vorfilter erreicht werden kann. Seit knapp 2 Jahren sind photonenzählende CT-Systeme verfügbar, die die spektrale Information direkt aus der Energie der eintreffenden Photonen extrahieren. Theoretisch lassen sich aus der spektralen CT durchaus Vorteile für die onkologische Diagnostik ableiten, sei es erhöhte Sensitivität/Spezifizität bestimmter Untersuchungen, Therapiemonitoring oder Prognoseabschätzung oder eine Dosisreduktion. Aufgrund der Vielfalt technischer Lösungen und aufgrund der vielen Freiheitsgrade bei der Bildrekonstruktion (monochromatische Bilder unterschiedlicher keV-Werte, Virtual-non-Contrast[VNC]-Bilder, Jodmaps usw.) mangelt es jedoch an Standardisierung und Vergleichbarkeit der Protokolle, Vorgehensweisen und an der Reproduzierbarkeit der Ergebnisse über verschiedene Scannertypen hinweg.

Abstract

Background

Spectral computed tomography (CT) systems have been in use in clinical diagnostics for nearly two decades. Despite the availability of dual-energy CT, application in general and in the field of oncology diagnostics is still limited. Dual-energy CT has not yet found its way into oncology guidelines. This review discusses the underlying CT technology with its strengths and weaknesses and then identifies potential applications of dual-energy CT in oncological diagnostics based on a selective literature review.

Results

Until recently, spectral CT was synonymous with dual-energy CT (DECT). CT systems are based on different X‑ray spectra reaching the detector, which can be achieved, for example, by using different tube voltages or prefilters. Photon-counting CT systems that extract spectral information directly from the energy of the incoming photons has been available for about 2 years. Theoretically, spectral CT can definitely be used to derive advantages for oncological diagnostics, be it increased sensitivity/specificity of certain examinations, therapy monitoring, prognosis estimation, or dose reduction. However, due to the variety of technical solutions and due to the many degrees of freedom in image reconstruction (e.g., monochromatic images of different keV values, virtual noncontrast [VNC] images, iodine maps), there is a lack of standardization and comparability of protocols, procedures, and reproducibility of results across different scanner types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Borges AP, Antunes C, Caseiro-Alves F (2023) Spectral CT: current liver applications. Diagnostics 13:1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lennartz S, Parakh A, Cao J, Kambadakone A (2021) Longitudinal reproducibility of attenuation measurements on virtual unenhanced images: multivendor dual-energy CT evaluation. Eur Radiol 31:9240–9249

    Article  PubMed  Google Scholar 

  3. Zhong J, Pan Z, Chen Y, Wang L, Xia Y, Wang L, Li J, Lu W, Shi X, Feng J, Yan F, Zhang H, Yao W (2023) Robustness of radiomics features of virtual unenhanced and virtual monoenergetic images in dual-energy CT among different imaging platforms and potential role of CT number variability. Insights Imaging. https://doi.org/10.1186/s13244-023-01426-5

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lv Y, Zhou J, Lv X et al (2020) Dual-energy spectral CT quantitative parameters for the differentiation of Glioma recurrence from treatment-related changes: a preliminary study. BMC Med Imaging. https://doi.org/10.1186/s12880-019-0406-5

  5. Hsu CC‑T, Jeavon C, Fomin I et al (2021) Dual-layer spectral CT imaging of upper aerodigestive tract cancer: analysis of spectral imaging parameters and impact on tumor staging. AJNR Am J Neuroradiol 42:1683–1689

    Article  PubMed  PubMed Central  Google Scholar 

  6. Forghani R, Mukherji SK (2018) Advanced dual-energy CT applications for the evaluation of the soft tissues of the neck. Clin Radiol 73:70–80

    Article  CAS  PubMed  Google Scholar 

  7. Kim C, Kim W, Park S‑J, Lee YH, Hwang SH, Yong HS, Oh Y‑W, Kang E‑Y, Lee KY (2020) Application of dual-energy spectral computed tomography to thoracic oncology imaging. Korean J Radiol 21:838

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang M, Kono M (1997) Solitary pulmonary nodules: evaluation of blood flow patterns with dynamic CT. Radiology 205:471–478

    Article  CAS  PubMed  Google Scholar 

  9. Lin J, Zhang L, Zhang C‑Y, Lou H‑N, Wang Z‑G (2016) Application of gemstone spectral computed tomography imaging in the characterization of solitary pulmonary nodules. J Comput Assist Tomogr 40:907–911

    Article  PubMed  Google Scholar 

  10. Wu L, Cao G, Zhao L, Tang K, Lin J, Miao S, Lin T, Sun J, Zheng X (2018) Spectral CT analysis of solitary pulmonary nodules for differentiating malignancy from benignancy: the value of iodine concentration spatial distribution difference. Biomed Res Int 2018:1–9

    CAS  Google Scholar 

  11. Wang G, Zhang C, Li M, Deng K, Li W (2014) Preliminary application of high-definition computed tomographic gemstone spectral imaging in lung cancer. J Comput Assist Tomogr 38:77–81

    Article  PubMed  Google Scholar 

  12. Grob D, Oostveen LJ, Jacobs C, Scholten E, Prokop M, Schaefer-Prokop CM, Sechopoulos I, Brink M (2021) Pulmonary nodule enhancement in subtraction CT and dual-energy CT: a comparison study. Eur J Radiol 134:109443

    Article  PubMed  Google Scholar 

  13. Nagayama Y, Inoue T, Oda S, Tanoue S, Nakaura T, Ikeda O, Yamashita Y (2020) Adrenal adenomas versus metastases: diagnostic performance of dual-energy spectral CT virtual noncontrast imaging and iodine maps. Radiology 296:324–332

    Article  PubMed  Google Scholar 

  14. Grant KL, Flohr TG, Krauss B, Sedlmair M, Thomas C, Schmidt B (2014) Assessment of an advanced image-based technique to calculate virtual monoenergetic computed tomographic images from a dual-energy examination to improve contrast-to-noise ratio in examinations using Iodinated contrast media. Invest Radiol 49:586–592

    Article  PubMed  Google Scholar 

  15. Husarik DB, Gordic S, Desbiolles L, Krauss B, Leschka S, Wildermuth S, Alkadhi H (2015) Advanced virtual monoenergetic computed tomography of hyperattenuating and hypoattenuating liver lesions. Invest Radiol 50:695–702

    Article  PubMed  Google Scholar 

  16. Yoon JH, Chang W, Lee ES, Lee SM, Lee JM (2020) Double low-dose dual-energy liver CT in patients at high-risk of HCC. Invest Radiol 55:340–348

    Article  CAS  PubMed  Google Scholar 

  17. Reimer RP, Hokamp NG, Efferoth AF, Krauskopf A, Zopfs D, Kröger JR, Persigehl T, Maintz D, Bunck AC (2020) Virtual monoenergetic images from spectral detector computed tomography facilitate washout assessment in arterially hyper-enhancing liver lesions. Eur Radiol 31:3468–3477

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lenga L, Czwikla R, Wichmann JL, Leithner D, Albrecht MH, Booz C, Arendt CT, Yel I, D’ Angelo T, Vogl TJ, Martin SS (2018) Dual-energy CT in patients with colorectal cancer: improved assessment of hypoattenuating liver metastases using noise-optimized virtual monoenergetic imaging. Eur J Radiol 106:184–191

    Article  PubMed  Google Scholar 

  19. Wu ZJ, Hippe DS, Zamora DA, Briller N, Amin KA, Kolokythas O, Mileto A (2021) Accuracy of dual-energy computed tomography techniques for fat quantification in comparison with magnetic resonance proton density fat fraction and single-energy computed tomography in an anthropomorphic phantom environment. J Comput Assist Tomogr 45:877–887

    Article  PubMed  Google Scholar 

  20. Kramer H, Pickhardt PJ, Kliewer MA, Hernando D, Chen G‑H, Zagzebski JA, Reeder SB (2017) Accuracy of liver fat quantification with advanced CT, MRI, and ultrasound techniques: prospective comparison with MR spectroscopy. AJR Am J Roentgenol 208:92–100

    Article  PubMed  Google Scholar 

  21. Luo XF, Xie XQ, Cheng S, Yang Y, Yan J, Zhang H, Chai WM, Schmidt B, Yan FH (2015) Dual-energy CT for patients suspected of having liver iron overload: can virtual iron content imaging accurately quantify liver iron content? Radiology 277:95–103

    Article  PubMed  Google Scholar 

  22. Liang H, Zhou Y, Zheng Q, Yan G, Liao H, Du S, Zhang X, Lv F, Zhang Z, Li Y‑M (2022) Dual-energy CT with virtual monoenergetic images and iodine maps improves tumor conspicuity in patients with pancreatic ductal adenocarcinoma. Insights Imaging. https://doi.org/10.1186/s13244-022-01297-2

    Article  PubMed  PubMed Central  Google Scholar 

  23. Han YE, Park BJ, Sung DJ, Kim MJ, Han NY, Sim KC, Cho Y, Kim H (2022) Dual-layer spectral CT of pancreas ductal adenocarcinoma: can virtual monoenergetic images of the portal venous phase be an alternative to the pancreatic-phase scan? J Belg Soc Radiol. https://doi.org/10.5334/jbsr.2798

    Article  Google Scholar 

  24. Nagayama Y, Tanoue S, Inoue T, Oda S, Nakaura T, Utsunomiya D, Yamashita Y (2019) Dual-layer spectral CT improves image quality of multiphasic pancreas CT in patients with pancreatic ductal adenocarcinoma. Eur Radiol 30:394–403

    Article  PubMed  Google Scholar 

  25. Herts BR, Silverman SG, Hindman NM, Uzzo RG, Hartman RP, Israel GM, Baumgarten DA, Berland LL, Pandharipande PV (2018) Management of the incidental renal mass on CT: a white paper of the ACR incidental findings committee. J Am Coll Radiol 15:264–273

    Article  PubMed  Google Scholar 

  26. Thiravit S, Brunnquell C, Cai LM, Flemon M, Mileto A (2020) Use of dual-energy CT for renal mass assessment. Eur Radiol 31:3721–3733

    Article  PubMed  Google Scholar 

  27. Camlidag I, Nural MS, Kalkan C, Danaci M (2020) Discrimination of papillary renal cell carcinoma from benign proteinaceous cyst based on iodine and water content on rapid kV-switching dual-energy CT. Diagn Interv Radiol 26:390–395

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jacobsen MC, Cressman ENK, Tamm EP, Baluya DL, Duan X, Cody DD, Schellingerhout D, Layman RR (2019) Dual-energy CT: lower limits of iodine detection and quantification. Radiology 292:414–419

    Article  PubMed  Google Scholar 

  29. Mileto A, Barina A, Marin D, Stinnett SS, Choudhury KR, Wilson JM, Nelson RC (2016) Virtual monochromatic images from dual-energy multidetector CT: variance in CT numbers from the same lesion between single-source projection-based and dual-source image-based implementations. Radiology 279:269–277

    Article  PubMed  Google Scholar 

  30. Faby S, Kuchenbecker S, Sawall S, Simons D, Schlemmer H‑P, Lell M, Kachelrieß M (2015) Performance of today’s dual energy CT and future multi energy CT in virtual non-contrast imaging and in iodine quantification: a simulation study. Med Phys 42:4349–4366

    Article  PubMed  Google Scholar 

  31. Hou WS, Wu HW, Yin Y, Cheng JJ, Zhang Q, Xu JR (2015) Differentiation of lung cancers from inflammatory masses with dual-energy spectral CT imaging. Acad Radiol 22:337–344

    Article  PubMed  Google Scholar 

Download references

Danksagung

Vielen Dank an Lukas Hennemann für die Unterstützung bei der Vorbereitung des Manuskripts.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Lell or Marc Kachelrieß Dipl.-Phys..

Ethics declarations

Interessenkonflikt

M. Lell und M. Kachelrieß geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lell, M., Kachelrieß, M. Spektrale Computertomographie in der onkologischen Diagnostik. Onkologie 29, 1060–1068 (2023). https://doi.org/10.1007/s00761-023-01415-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-023-01415-9

Schlüsselwörter

Keywords

Navigation