Skip to main content

Advertisement

Log in

Use of dual-energy CT for renal mass assessment

  • Urogenital
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Although dual-energy CT (DECT) may prove useful in a variety of abdominal imaging tasks, renal mass evaluation represents the area where this technology can be most impactful in abdominal imaging compared to routinely performed contrast-enhanced–only single-energy CT exams. DECT post-processing techniques, such as creation of virtual unenhanced and iodine density images, can help in the characterization of incidentally discovered renal masses that would otherwise remain indeterminate based on post-contrast imaging only. The purpose of this article is to review the use of DECT for renal mass assessment, including its benefits and existing limitations.

Key Points

If DECT is selected as the scanning mode for most common abdominal protocols, many incidentally found renal masses can be fully triaged within the same exam.

Virtual unenhanced and iodine density DECT images can provide additional information when renal masses are discovered in the post-contrast–only setting.

For renal mass evaluation, virtual unenhanced and iodine density DECT images should be interpreted side-by-side to troubleshoot pitfalls that can potentially lead to erroneous interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DECT:

Dual-energy CT

DL-DECT:

Dual-layer dual-energy CT

DS-DECT:

Dual-source dual-energy CT

IVP:

Intravenous pyelography

KVS-DECT:

Rapid kilovoltage-peak switching dual-energy CT

PACS:

Picture archiving and communication system

RCC:

Renal cell carcinoma

SECT:

Single-energy CT

SF-DECT:

Split-filter dual-energy CT

SS-DECT:

Sequential scanning dual-energy CT

VMCI:

Virtual monochromatic images

VUE:

Virtual unenhanced

References

  1. Graser A, Becker CR, Staehler M et al (2010) Single-phase dual- energy CT allows for characterization of renal masses as benign or malignant. Invest Radiol 45:399–405

    PubMed  Google Scholar 

  2. Ascenti G, Mazziotti S, Mileto A et al (2012) Dual-source dual-energy CT evaluation of complex cystic renal masses. AJR Am J Roentgenol 199:1026–1034

    PubMed  Google Scholar 

  3. Mileto A, Marin D, Ramirez-Giraldo JC et al (2014) Accuracy of contrast-enhanced dual-energy MDCT for the assessment of iodine uptake in renal lesions. AJR Am J Roentgenol 202:W466–W474

    PubMed  Google Scholar 

  4. Pourvaziri A, Parakh A, Mojtahed A, Kambadakone A, Sahani DV (2019) Diagnostic performance of dual-energy CT and subtraction CT for renal lesion detection and characterization. Eur Radiol 29:6559–6570

    PubMed  Google Scholar 

  5. Cha D, Kim CK, Park JJ, Park BK (2016) Evaluation of hyperdense renal lesions incidentally detected on single-phase post-contrast CT using dual-energy CT. Br J Radiol 89:20150860

    PubMed  PubMed Central  Google Scholar 

  6. Marin D, Davis D, Choudhury KR et al (2017) Characterization of small focal renal lesions: diagnostic accuracy with single-phase contrast-enhanced dual-energy CT with material attenuation analysis compared with conventional attenuation measurements. Radiology 284:737–747

    PubMed  Google Scholar 

  7. Meyer M, Nelson RC, Vernuccio F et al (2019) Comparison of iodine quantification and conventional attenuation measurements for differentiating small, truly enhancing renal masses from high-attenuation nonenhancing renal lesions with dual-energy CT. AJR Am J Roentgenol 213:W26–W36

    PubMed  Google Scholar 

  8. Uhrig M, Simons D, Kachelriess M, Pisana F, Kuchenbecker S, Schlemmer HP (2016) Advanced abdominal imaging with dual energy CT is feasible without increasing radiation dose. Cancer Imaging 16:15

    PubMed  PubMed Central  Google Scholar 

  9. Euler A, Obmann MM, Szucs-Farkas Z et al (2018) Comparison of image quality and radiation dose between split-filter dual-energy images and single-energy images in single-source abdominal CT. Eur Radiol 28:3405–3412

    PubMed  Google Scholar 

  10. Patino M, Prochowski A, Agrawal MD et al (2016) Material separation using dual-energy CT: current and emerging applications. Radiographics 36:1087–1105

    PubMed  Google Scholar 

  11. Song KD, Kim CK, Park BK, Kim B (2011) Utility of iodine overlay technique and virtual unenhanced images for the characterization of renal masses by dual-energy CT. AJR Am J Roentgenol 197:W1076–W1082

    PubMed  Google Scholar 

  12. McCollough CH, Leng S, Yu L, Fletcher JG (2015) Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276:637–653

    PubMed  PubMed Central  Google Scholar 

  13. Mileto A, Nelson RC, Samei E et al (2014) Dual-energy MDCT in hypervascular liver tumors: effect of body size on selection of the optimal monochromatic energy level. AJR Am J Roentgenol 203:1257–1264

    PubMed  Google Scholar 

  14. Marin D, Boll DT, Mileto A, Nelson RC (2014) State of the art: dual-energy CT of the abdomen. Radiology 271:327–342

    PubMed  Google Scholar 

  15. Kang HJ, Lee JM, Lee SM et al (2019) Value of virtual monochromatic spectral image of dual-layer spectral detector CT with noise reduction algorithm for image quality improvement in obese simulated body phantom. BMC Med Imaging 19:76

    PubMed  PubMed Central  Google Scholar 

  16. Kalisz K, Rassouli N, Dhanantwari A, Jordan D, Rajiah P (2018) Noise characteristics of virtual monoenergetic images from a novel detector-based spectral CT scanner. Eur J Radiol 98:118–125

    PubMed  Google Scholar 

  17. Atwi NE, Smith DL, Flores CD et al (2019) Dual-energy CT in the obese: a preliminary retrospective review to evaluate quality and feasibility of the single-source dual-detector implementation. Abdom Radiol (NY) 44:783–789

    Google Scholar 

  18. Jacobsen MC, Schellingerhout D, Wood CA et al (2018) Intermanufacturer comparison of dual-energy CT iodine quantification and monochromatic attenuation: a phantom study. Radiology 287:224–234

    PubMed  Google Scholar 

  19. Euler A, Solomon J, Mazurowski MA, Samei E, Nelson RC (2019) How accurate and precise are CT based measurements of iodine concentration? A comparison of the minimum detectable concentration difference among single source and dual source dual energy CT in a phantom study. Eur Radiol 29:2069–2078

    PubMed  Google Scholar 

  20. Patel BN, Alexander L, Allen B et al (2017) Dual-energy CT workflow: multi-institutional consensus on standardization of abdominopelvic MDCT protocols. Abdom Radiol (NY) 42:676–687

    Google Scholar 

  21. Mileto A, Allen BC, Pietryga JA et al (2017) Characterization of incidental renal mass with dual-energy CT: diagnostic accuracy of effective atomic number maps for discriminating nonenhancing cysts from enhancing masses. AJR Am J Roentgenol 209:W221–W230

    PubMed  Google Scholar 

  22. Herts BR, Silverman SG, Hindman NM et al (2018) Management of the incidental renal mass on CT: a white paper of the ACR incidental findings committee. J Am Coll Radiol 15:264–273

    PubMed  Google Scholar 

  23. Agochukwu N, Huber S, Spektor M, Goehler A, Israel GM (2017) Differentiating renal neoplasms from simple cysts on contrast-enhanced CT on the basis of attenuation and homogeneity. AJR Am J Roentgenol 208:801–804

    PubMed  Google Scholar 

  24. Bae KT, Heiken JP, Siegel CL, Bennett HF (2000) Renal cysts: is attenuation artifactually increased on contrast-enhanced CT images? Radiology 216:792–796

    CAS  PubMed  Google Scholar 

  25. Itani M, Bresnahan BW, Rice K et al (2019) Clinical and payer-based analysis of value of dual-energy computed tomography for workup of incidental abdominal findings. J Comput Assist Tomogr 43:605–611

    PubMed  Google Scholar 

  26. Wortman JR, Shyu JY, Fulwadhva UP, Sodickson AD (2019) Impact analysis of the routine use of dual-energy computed tomography for characterization of incidental renal lesions. J Comput Assist Tomogr 43:176–182

    PubMed  Google Scholar 

  27. Popnoe DO, Ng CS, Zhou SH, Kappadath C, Pan TS, Jones AK (2019) Comparison of enhancement quantification from virtual unenhanced images to true unenhanced images in multiphase renal dual-energy computed tomography: a phantom study. J Appl Clin Med Phys 20:171–179

    Google Scholar 

  28. Slebocki K, Kraus B, Chang DH, Hellmich M, Maintz D, Bangard C (2017) Incidental findings in abdominal dual-energy computed tomography: correlation between true noncontrast and virtual noncontrast images considering renal and liver cysts and adrenal masses. J Comput Assist Tomogr 41:294–297

    PubMed  Google Scholar 

  29. Meyer M, Nelson RC, Vernuccio F et al (2019) Virtual unenhanced images at dual-energy CT: influence on renal lesion characterization. Radiology 291:380–389

    Google Scholar 

  30. Jamali S, Michoux N, Coche E, Dragean CA (2019) Virtual unenhanced phase with spectral dual-energy CT: is it an alternative to conventional true unenhanced phase for abdominal tissues? Diagn Interv Imaging 100:503–511

    CAS  PubMed  Google Scholar 

  31. Neville AM, Gupta RT, Miller CM, Merkle EM, Paulson EK, Boll DT (2011) Detection of renal lesion enhancement with dual-energy multidetector CT. Radiology 259:173–183

    PubMed  Google Scholar 

  32. Durieux P, Gevenois PA, Muylem AV, Howarth N, Keyzer C (2018) Abdominal attenuation values on virtual and true unenhanced images obtained with third-generation dual-source dual-energy CT. AJR Am J Roentgenol 210:1042–1058

    PubMed  Google Scholar 

  33. Kaza RK, Raff EA, Davenport MS, Khalatbari S (2017) Variability of CT attenuation measurements in virtual unenhanced images generated using multimaterial decomposition from fast kilovoltage-switching dual-energy CT. Acad Radiol 24:365–372

    PubMed  Google Scholar 

  34. Graser A, Johnson TRC, Hecht EM et al (2009) Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology 252:433–440

    PubMed  Google Scholar 

  35. Patel BN, Bibbey A, Choudhury KR, Leder RA, Nelson RC, Marin D (2017) Characterization of small (< 4 cm) focal renal lesions: diagnostic accuracy of spectral analysis using single-phase contrast-enhanced dual-energy CT. AJR Am J Roentgenol 209:815–825

    PubMed  Google Scholar 

  36. Chandarana H, Megibow AJ, Cohen BA et al (2011) Iodine quantification with dual-energy CT: phantom study and preliminary experience with renal masses. AJR Am J Roentgenol 196:W693–W700

    PubMed  Google Scholar 

  37. Ascenti G, Mileto A, Krauss B et al (2013) Distinguishing enhancing from nonenhancing renal masses with dual-source dual-energy CT: iodine quantification versus standard enhancement measurements. Eur Radiol 23:2288–2295

    PubMed  Google Scholar 

  38. Bellini D, Panvini N, Laghi A et al (2019) Systematic review and meta-analysis investigating the diagnostic yield of dual-energy CT for renal mass assessment. AJR Am J Roentgenol 212:1044–1053

    Google Scholar 

  39. Salameh JP, McInnes MDF, McGrath TA, Salameh G, Schieda N (2019) Diagnostic accuracy of dual-energy CT for evaluation of renal masses: systematic review and meta-analysis. AJR Am J Roentgenol 212:W100–W105

    PubMed  Google Scholar 

  40. Kaza RK, Caoili EM, Cohan RH, Platt JF (2011) Distinguishing enhancing from nonenhancing renal lesions with fast kilovoltage-switching dual-energy CT. AJR Am J Roentgenol 197:1375–1381

    PubMed  Google Scholar 

  41. Patel BN, Vernuccio F, Meyer M et al (2019) Dual-energy CT material density iodine quantification for distinguishing vascular from nonvascular renal lesions: normalization reduces intermanufacturer threshold variability. AJR Am J Roentgenol 212:366–376

    PubMed  Google Scholar 

  42. Sadoughi N, Krishna S, Macdonald DB et al (2019) Diagnostic accuracy of attenuation difference and iodine concentration thresholds at rapid-kilovoltage-switching dual-energy CT for detection of enhancement in renal masses. AJR Am J Roentgenol 213:619–625

    PubMed  Google Scholar 

  43. Glomski SA, Wortman JR, Uyeda JW, Sodickson AD (2018) Dual energy CT for evaluation of polycystic kidneys: a multi reader study of interpretation time and diagnostic confidence. Abdom Radiol (NY) 43:3418–3424

    Google Scholar 

  44. Boning G, Jahnke P, Feldhaus F et al (2020) Stepwise analysis of potential accuracy-influencing factors of iodine quantification on a fast kVp-switching second-generation dual-energy CT: from 3D-printed phantom to a simple solution in clinical routine use. Acta Radiol 61:424–431

    PubMed  Google Scholar 

  45. Pelgrim GJ, van Hamersvelt RW, Willemink MJ et al (2017) Accuracy of iodine quantification using dual energy CT in latest generation dual source and dual layer CT. Eur Radiol 27:3904–3912

    PubMed  PubMed Central  Google Scholar 

  46. Jacobsen MC, Cressman ENK, Tamm EP et al (2019) Dual-energy CT: lower limits of iodine detection and quantification. Radiology 292:414–419

    PubMed  PubMed Central  Google Scholar 

  47. Miller CM, Gupta RT, Paulson EK et al (2011) Effect of organ enhancement and habitus on estimation of unenhanced attenuation at contrast-enhanced dual-energy MDCT: concepts for individualized and organ-specific spectral iodine subtraction strategies. AJR Am J Roentgenol 196:W558–W564

    PubMed  Google Scholar 

  48. Schindera ST, Tock I, Marin D et al (2010) Effect of beam hardening on arterial enhancement in thoracoabdominal CT angiography with increasing patient size: an in vitro and in vivo study. Radiology 256:528–535

    PubMed  Google Scholar 

  49. Mongan J, Rathnayake S, Fu Y et al (2012) In vivo differentiation of complementary contrast media at dual-energy CT. Radiology 265:267–272

    PubMed  PubMed Central  Google Scholar 

  50. McCollough CH, Boedeker K, Cody D et al (2020) Principles and applications of multienergy CT: report of AAPM Task Group 291. Med Phys 47:e881–e912

    CAS  PubMed  Google Scholar 

  51. Toia GV, Kim S, Dighe MK, Mileto A (2018) Dual-energy computed tomography in body imaging. Semin Roentgenol 53:132–146

    PubMed  Google Scholar 

  52. Kessner R, Große Hokamp N, Ciancibello L, Ramaiya N, Herrmann KA (2019) Renal cystic lesions characterization using spectral detector CT (SDCT): added value of spectral results. Br J Radiol 92:20180915

    PubMed  PubMed Central  Google Scholar 

  53. Davenport MS, Perazella MA, Yee J et al (2020) Use of intravenous iodinated contrast media in patients with kidney disease: consensus statements from the American College of Radiology and the National Kidney Foundation. Radiology 294:660–668

    PubMed  Google Scholar 

  54. European Society of Urogenital Radiology (2018) ESUR contrast media safety guidelines version 10.0. Available via http://www.esur.org/fileadmin/content/2019/ESUR_Guidelines_10.0_Final_Version.pdf

  55. Yoshida M, Nakaura T, Sentaro T et al (2019) Prospective comparison of 70-kVp single-energy CT versus dual-energy CT: which is more suitable for CT angiography with low contrast media dosage? Acad Radiol. https://doi.org/10.1016/j.acra.2019.07.016

  56. Shuman WP, Mileto A, Busey JM, Desai N, Koprowicz KM (2019) Dual-energy CT urography with 50% reduced iodine dose versus single-energy CT urography with standard iodine dose. AJR Am J Roentgenol 212:117–123

    PubMed  Google Scholar 

  57. Hou P, Feng X, Liu J et al (2017) Iterative reconstruction in single-source dual-energy CT angiography: feasibility of low and ultra-low volume contrast medium protocols. Br J Radiol 90:20160506

    PubMed  PubMed Central  Google Scholar 

  58. Nagayama Y, Nakaura T, Oda S et al (2018) Dual-layer detector CT of chest, abdomen, and pelvis with a one-third iodine dose: image quality, radiation dose, and optimal monoenergetic settings. Clin Radiol 73:1058.e21–1058.e29

    CAS  Google Scholar 

  59. Sugi MD, Joshi G, Maddu KK, Dahiya N, Menias CO (2019) Imaging of renal transplant complications throughout the life of the allograft: comprehensive multimodality review. Radiographics 39:1327–1355

    PubMed  Google Scholar 

  60. Chewcharat A, Thongprayoon C, Bathini T et al (2019) Incidence and mortality of renal cell carcinoma after kidney transplantation: a meta-analysis. J Clin Med 8:530

    PubMed Central  Google Scholar 

  61. L'Hostis F, Vial J, Dallery F et al (2019) Detection and characterization of atypical renal cysts and solid renal masses in kidney transplant patients by use of dual-energy CT iodine maps. AJR Am J Roentgenol 213:115–122

    PubMed  Google Scholar 

  62. Lum MA, Shah SB, Durack JC, Nikolovski I (2019) Imaging of small renal masses before and after thermal ablation. Radiographics 39:2134–2145

    PubMed  Google Scholar 

  63. Patel U, Sokhi H (2012) Imaging in the follow-up of renal cell carcinoma. AJR Am J Roentgenol 198:1266–1276

    PubMed  Google Scholar 

  64. Park SY, Kim CK, Park BK (2014) Dual-energy CT in assessing therapeutic response to radiofrequency ablation of renal cell carcinomas. Eur J Radiol 83:E73–E79

    PubMed  Google Scholar 

  65. Vernuccio F, Meyer M, Mileto A, Marin D (2018) Use of dual-energy computed tomography for evaluation of genitourinary diseases. Urol Clin North Am 45:297–310

    PubMed  Google Scholar 

  66. Vandenbroucke F, Van Hedent S, Van Gompel G et al (2015) Dual-energy CT after radiofrequency ablation of liver, kidney, and lung lesions: a review of features. Insights Imaging 6:363–379

    PubMed  PubMed Central  Google Scholar 

  67. Mileto A, Marin D, Alfaro-Cordoba M et al (2014) Iodine quantification to distinguish clear cell from papillary renal cell carcinoma at dual-energy multidetector CT: a multireader diagnostic performance study. Radiology 273:813–820

    PubMed  Google Scholar 

  68. Dai C, Cao Y, Jia Y et al (2018) Differentiation of renal cell carcinoma subtypes with different iodine quantification methods using single-phase contrast-enhanced dual-energy CT: areal vs. volumetric analyses. Abdom Radiol (NY) 43:672–678

    Google Scholar 

  69. Marcon J, Graser A, Horst D et al (2020) Papillary vs clear cell renal cell carcinoma. Differentiation and grading by iodine concentration using DECT-correlation with microvascular density. Eur Radiol 30:1–10

    CAS  PubMed  Google Scholar 

  70. Zarzour JG, Milner D, Valentin R et al (2017) Quantitative iodine content threshold for discrimination of renal cell carcinomas using rapid kV-switching dual-energy CT. Abdom Radiol (NY) 42:727–734

    Google Scholar 

  71. Camlidag I, Nural MS, Danaci M, Ozden E (2018) Usefulness of rapid kV-switching dual energy CT in renal tumor characterization. Abdom Radiol (NY) 44:1841–1849

    Google Scholar 

  72. Wei J, Zhao J, Zhang X et al (2018) Analysis of dual energy spectral CT and pathological grading of clear cell renal cell carcinoma (ccRCC). PLoS One 13:e0195699

    PubMed  PubMed Central  Google Scholar 

  73. Wang QJ, Hanada K, Robbins PF, Li YF, Yang JC (2012) Distinctive features of the differentiated phenotype and infiltration of tumor-reactive lymphocytes in clear cell renal cell carcinoma. Cancer Res 72:6119–6129

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhou Y, Su GY, Hu H et al (2020) Radiomics analysis of dual-energy CT-derived iodine maps for diagnosing metastatic cervical lymph nodes in patients with papillary thyroid cancer. Eur Radiol. https://doi.org/10.1007/s00330-020-06866-x

  75. Forghani R, Savadjiev P, Chatterjee A, Muthukrishnan N, Reinhold C, Forghani B (2019) Radiomics and artificial intelligence for biomarker and prediction model development in oncology. Comput Struct Biotechnol J 17:995–1008

    PubMed  PubMed Central  Google Scholar 

  76. Ng CS, Wood CG, Silverman PM, Tannir NM, Tamboli P, Sandler CM (2008) Renal cell carcinoma: diagnosis, staging, and surveillance. AJR Am J Roentgenol 191:1220–1232

    PubMed  Google Scholar 

  77. Deniffel D, Sauter A, Dangelmaier J, Fingerle A, Rummeny EJ, Pfeiffer D (2019) Differentiating intrapulmonary metastases from different primary tumors via quantitative dual-energy CT based iodine concentration and conventional CT attenuation. Eur J Radiol 111:6–13

    PubMed  Google Scholar 

  78. Diaz de Leon A, Pirasteh A, Costa DN et al (2019) Current challenges in diagnosis and assessment of the response of locally advanced and metastatic renal cell carcinoma. Radiographics 39:998–1016

    PubMed  PubMed Central  Google Scholar 

  79. Hellbach K, Sterzik A, Sommer W et al (2017) Dual energy CT allows for improved characterization of response to antiangiogenic treatment in patients with metastatic renal cell cancer. Eur Radiol 27:2532–2537

    CAS  PubMed  Google Scholar 

  80. Udare A, Walker D, Krishna S et al (2020) Characterization of clear cell renal cell carcinoma and other renal tumors: evaluation of dual-energy CT using material-specific iodine and fat imaging. Eur Radiol 30:2091–2102

    PubMed  Google Scholar 

  81. Wan Y, Guo H, Ji L, Li Z, Gao J (2018) Gemstone spectral imaging dual-energy computed tomography for differentiation of renal cell carcinoma and minimal-fat renal angiomyolipoma. J Cancer Res Ther 14:S394–S399

    CAS  PubMed  Google Scholar 

  82. Mendonca PR, Lamb P, Sahani DV (2014) A flexible method for multi-material decomposition of dual-energy CT images. IEEE Trans Med Imaging 33:99–116

    PubMed  Google Scholar 

  83. Anderson NG, Butler AP, Scott NJ et al (2010) Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE. Eur Radiol 20:2126–2134

    CAS  PubMed  Google Scholar 

  84. Symons R, Krauss B, Sahbaee P et al (2017) Photon-counting CT for simultaneous imaging of multiple contrast agents in the abdomen: an in vivo study. Med Phys 44:5120–5127

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achille Mileto.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Achille Mileto, MD.

Conflict of interest

Achille Mileto has a research grant from GE Healthcare and receives research support from Philips Healthcare.

The rest of the authors declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was not required for this study because it is a review article that does not involve research on human subjects.

Ethical approval

Institutional Review Board approval was not required because it is a review article that does not involve research on human subjects.

Methodology

• Narrative review

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 586 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiravit, S., Brunnquell, C., Cai, L.M. et al. Use of dual-energy CT for renal mass assessment. Eur Radiol 31, 3721–3733 (2021). https://doi.org/10.1007/s00330-020-07426-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-020-07426-z

Keywords

Navigation