Skip to main content
Log in

Molekulare Diversität der akuten lymphoblastischen Leukämie

Innovationen in Diagnostik und Therapie

Molecular diversity in acute lymphoblastic leukemia

New developments for diagnosis and therapy

  • Leitthema
  • Published:
Die Onkologie Aims and scope

Zusammenfassung

Hintergrund

In der akuten lymphoblastischen Leukämie (ALL) werden über 20 molekulare Subtypen, basierend auf genomischem Treiber und zugehörigem Genexpressionsprofil, unterschieden.

Ziel

Diese molekulare Diversität wurde hinsichtlich ihrer Implikationen für Diagnostik und Therapie analysiert.

Material und Methoden

Dazu wurde eine gezielte Literaturrecherche durchgeführt und um eigene Analysen aus GMALL-Patientenkohorten (German Multicenter Study Group on Adult Acute Lymphoblastic Leukemia) ergänzt.

Ergebnisse und Diskussion

Die Transkriptomsequenzierung (RNA-Seq) ermöglich für > 90 % der ALL-Patienten eine zuverlässige Zuordnung zu einer von über 20 Subgruppen mit einer einzigen Methode. Die klinischen Phänotypen sind noch unzureichend charakterisiert. Prognostische Relevanz zeichnet sich für Therapieansprechen und Gesamtüberleben ab. Alter und Geschlecht bestimmen die Selektion leukämogener Treiber mit. Rückgrat der ALL-Therapie bleibt die risikostratifizierte Polychemotherapie, ergänzt durch antiköperbasierte und zelluläre Immuntherapien sowie die allogene Stammzelltransplantation. Neben der Standard-Tyrosinkinaseinhibitor(TKI)-Therapie für die BCR::ABL1-positive ALL weisen Fallserien auf Wirksamkeit von spezifischen TKI für den Ph-like-ALL-Subtyp bei Vorliegen einer ABL-Klasse-Genfusion oder bei Fusionen mit NTR-Kinasen hin. Wichtigstes Integral für das Therapieansprechen bleibt die minimale Resterkrankung (MRD). Sie ist nicht nur stärkster unabhängiger Prognosefaktor, sondern auch Indikator eines drohenden Rezidivs. Richtungsweisend für weitere Therapieoptimierung werden molekulare Diagnostik (genomischem Treiber, Genregulation/Transkriptom, MRD) sowie der Einsatz etablierter und neuer zielgerichteter Ansätze sein.

Abstract

Background

In acute lymphoblastic leukemia (ALL), more than 20 molecular subtypes have been distinguished based on the genomic driver and corresponding gene expression profile.

Purpose

To analyze this molecular diversity with respect to its implications for diagnosis and therapy.

Materials and methods

A targeted literature search was performed and complemented by our own analyses from GMALL (German Multicenter Study Group on Adult Acute Lymphoblastic Leukemia) patient cohorts.

Results and discussion

Transcriptome sequencing (RNA-Seq) allows reliable allocation to one of more than 20 subgroups for > 90% of ALL patients using a single method. The respective clinical phenotypes are still insufficiently characterized. Prognostic relevance for therapy response and overall survival is emerging. Age and gender contribute to the selection of leukemogenic drivers. The backbone of ALL therapy remains risk-stratified polychemotherapy, supplemented by antibody-based and cellular immunotherapies and allogeneic stem cell transplantation. In addition to standard tyrosine kinase inhibitor (TKI) therapy for BCR::ABL1-positive ALL, case series indicate efficacy of specific TKIs for the Ph-like ALL subtype in the presence of ABL class gene fusion or fusions with NTR kinases. The most important factor for the analysis of treatment response remains minimal residual disease (MRD). It is not only the strongest independent prognostic factor, but also an indicator of impending relapse. Molecular diagnostics (genomic driver, gene regulation/transcriptome, MRD) and the use of established and new targeted approaches will be crucial for further therapy optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. also on behalf of the European Working Group for Adult Acute Lymphoblastic Leukemia (EWALL) and the International Berlin-Frankfurt-Münster Study Group (I-BFM-SG), Brüggemann M, Schrauder A et al (2010) Standardized MRD quantification in European ALL trials: Proceedings of the Second International Symposium on MRD assessment in Kiel, Germany, 18–20 September 2008. Leukemia 24:521–535. https://doi.org/10.1038/leu.2009.268

    Article  Google Scholar 

  2. Arber DA, Orazi A, Hasserjian R et al (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127:2391–2405. https://doi.org/10.1182/blood-2016-03-643544

    Article  CAS  PubMed  Google Scholar 

  3. Bastian L, Schroeder MP, Eckert C et al (2019) PAX5 biallelic genomic alterations define a novel subgroup of B‑cell precursor acute lymphoblastic leukemia. Leukemia 33:1895–1909. https://doi.org/10.1038/s41375-019-0430-z

    Article  CAS  PubMed  Google Scholar 

  4. Bastian L, Hänzelmann S, Neumann M et al (2020) Molecular subtypes with distinct clinical phenotypes and actionable targets in adult B cell precursor ALL treatment according to GMALL protocols. Blood 136:11–12. https://doi.org/10.1182/blood-2020-143032

    Article  Google Scholar 

  5. Bastian L, Hartmann AM, Beder T et al (2022) UBTF::ATXN7L3 gene fusion defines novel B cell precursor ALL subtype with CDX2 expression and need for intensified treatment. Leukemia. https://doi.org/10.1038/s41375-022-01557-6

    Article  PubMed  Google Scholar 

  6. Berry DA, Zhou S, Higley H et al (2017) Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia: a meta-analysis. JAMA Oncol 3:e170580. https://doi.org/10.1001/jamaoncol.2017.0580

    Article  PubMed  PubMed Central  Google Scholar 

  7. Brüggemann M, Raff T, Kneba M (2012) Has MRD monitoring superseded other prognostic factors in adult ALL? Blood 120:4470–4481. https://doi.org/10.1182/blood-2012-06-379040

    Article  CAS  PubMed  Google Scholar 

  8. Cordo’ V, van der Zwet JCG, Canté-Barrett K et al (2021) T‑cell acute lymphoblastic leukemia: a roadmap to targeted therapies. Blood Cancer Discov 2:19–31. https://doi.org/10.1158/2643-3230.BCD-20-0093

    Article  PubMed  Google Scholar 

  9. Dickerson KM, Qu C, Gao Q et al (2022) ZNF384 fusion oncoproteins drive lineage aberrancy in acute leukemia. Blood Cancer Discov. https://doi.org/10.1158/2643-3230.BCD-21-0163

    Article  PubMed  Google Scholar 

  10. Fischer U, Forster M, Rinaldi A et al (2015) Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options. Nat Genet 47:1020–1029. https://doi.org/10.1038/ng.3362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Foà R, Bassan R, Vitale A et al (2020) Dasatinib-Blinatumomab for Ph-Positive Acute Lymphoblastic Leukemia in Adults. N Engl J Med 383:1613–1623. https://doi.org/10.1056/NEJMoa2016272

    Article  PubMed  Google Scholar 

  12. Frismantas V, Dobay MP, Rinaldi A et al (2017) Ex vivo drug response profiling detects recurrent sensitivity patterns in drug-resistant acute lymphoblastic leukemia. Blood 129:e26–e37. https://doi.org/10.1182/blood-2016-09-738070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Giebel S, Marks DI, Boissel N et al (2019) Hematopoietic stem cell transplantation for adults with Philadelphia chromosome-negative acute lymphoblastic leukemia in first remission: a position statement of the European Working Group for Adult Acute Lymphoblastic Leukemia (EWALL) and the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant 54:798–809. https://doi.org/10.1038/s41409-018-0373-4

    Article  PubMed  Google Scholar 

  14. Goekbuget N, Stelljes M, Viardot A et al (2021) First results of the risk-adapted, MRD-stratified GMALL trial 08/2013 in 705 adults with newly diagnosed acute lymphoblastic leukemia/Lymphoma (ALL/LBL). Blood 138:362–362. https://doi.org/10.1182/blood-2021-146306

    Article  Google Scholar 

  15. Gökbuget N (2015) Aktuelle Therapie der akuten lymphatischen Leukämie des Erwachsenen. Internist 56:344–353. https://doi.org/10.1007/s00108-014-3595-6

    Article  PubMed  Google Scholar 

  16. Gökbuget N (2021) MRD in adult Ph/ BCR-ABL-negative ALL: how best to eradicate? Hematology 2021:718–725. https://doi.org/10.1182/hematology.2021000224

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gökbuget N, Dombret H, Bonifacio M et al (2018) Blinatumomab for minimal residual disease in adults with B‑cell precursor acute lymphoblastic leukemia. Blood 131:1522–1531. https://doi.org/10.1182/blood-2017-08-798322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gökbuget N, Dombret H, Giebel S et al (2020) Blinatumomab vs historic standard-of-care treatment for minimal residual disease in adults with B‑cell precursor acute lymphoblastic leukaemia. Eur J Haematol 104:299–309. https://doi.org/10.1111/ejh.13375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gökbuget N, Kantarjian HM, Brüggemann M et al (2019) Molecular response with blinatumomab in relapsed/refractory B‑cell precursor acute lymphoblastic leukemia. Blood Adv 3:3033–3037. https://doi.org/10.1182/bloodadvances.2019000457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gökbuget N, Kneba M, Raff T et al (2012) Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. Blood 120:1868–1876. https://doi.org/10.1182/blood-2011-09-377713

    Article  CAS  PubMed  Google Scholar 

  21. Gu Z, Churchman M, Roberts K et al (2016) Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia. Nat Commun 7:13331. https://doi.org/10.1038/ncomms13331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gu Z, Churchman ML, Roberts KG et al (2019) PAX5-driven subtypes of B‑progenitor acute lymphoblastic leukemia. Nat Genet 51:296–307. https://doi.org/10.1038/s41588-018-0315-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harvey RC, Tasian SK (2020) Clinical diagnostics and treatment strategies for Philadelphia chromosome-like acute lymphoblastic leukemia. Blood Adv 4:218–228. https://doi.org/10.1182/bloodadvances.2019000163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Herold T, Schneider S, Metzeler KH et al (2017) Adults with Philadelphia chromosome-like acute lymphoblastic leukemia frequently have IGH-CRLF2 and JAK2 mutations, persistence of minimal residual disease and poor prognosis. Haematologica 102:130–138. https://doi.org/10.3324/haematol.2015.136366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hoelzer D, Bassan R, Dombret H et al (2016) Acute lymphoblastic leukaemia in adult patients: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 27:v69–v82. https://doi.org/10.1093/annonc/mdw025

    Article  CAS  PubMed  Google Scholar 

  26. Hovorkova L, Zaliova M, Venn NC et al (2017) Monitoring of childhood ALL using BCR-ABL1 genomic breakpoints identifies a subgroup with CML-like biology. Blood 129:2771–2781. https://doi.org/10.1182/blood-2016-11-749978

    Article  CAS  PubMed  Google Scholar 

  27. Iacobucci I, Kimura S, Mullighan CG (2021) Biologic and therapeutic implications of genomic alterations in acute lymphoblastic leukemia. J Clin Med 10:3792. https://doi.org/10.3390/jcm10173792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jeha S, Choi J, Roberts KG et al (2021) Clinical significance of novel subtypes of acute lymphoblastic leukemia in the context of minimal residual disease-directed therapy. Blood Cancer Discov 2:326–337. https://doi.org/10.1158/2643-3230.BCD-20-0229

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kantarjian H, Stein A, Gökbuget N et al (2017) Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med 376:836–847. https://doi.org/10.1056/NEJMoa1609783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kantarjian HM, DeAngelo DJ, Stelljes M et al (2019) Inotuzumab ozogamicin versus standard of care in relapsed or refractory acute lymphoblastic leukemia: Final report and long-term survival follow-up from the randomized, phase 3 INO-VATE study. Cancer 125:2474–2487. https://doi.org/10.1002/cncr.32116

    Article  CAS  PubMed  Google Scholar 

  31. Kotrova M, Koopmann J, Trautmann H et al (2022) Prognostic value of low-level MRD in adult acute lymphoblastic leukemia detected by low- and high-throughput methods. Blood Adv. https://doi.org/10.1182/bloodadvances.2021006727

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kotrova M, Trka J, Kneba M, Brüggemann M (2017) Is next-generation sequencing the way to go for residual disease monitoring in acute lymphoblastic leukemia? Mol Diagn Ther 21:481–492. https://doi.org/10.1007/s40291-017-0277-9

    Article  CAS  PubMed  Google Scholar 

  33. Kotrova M, Volland A, Kehden B et al (2020) Comparison of minimal residual disease levels in bone marrow and peripheral blood in adult acute lymphoblastic leukemia. Leukemia 34:1154–1157. https://doi.org/10.1038/s41375-019-0599-1

    Article  PubMed  Google Scholar 

  34. Leichsenring J, Horak P, Kreutzfeldt S et al (2019) Variant classification in precision oncology. Int J Cancer 145:2996–3010. https://doi.org/10.1002/ijc.32358

    Article  CAS  PubMed  Google Scholar 

  35. Liu Y, Easton J, Shao Y et al (2017) The genomic landscape of pediatric and young adult T‑lineage acute lymphoblastic leukemia. Nat Genet 49:1211–1218. https://doi.org/10.1038/ng.3909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maude SL, Laetsch TW, Buechner J et al (2018) Tisagenlecleucel in children and young adults with B‑cell lymphoblastic leukemia. N Engl J Med 378:439–448. https://doi.org/10.1056/NEJMoa1709866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maury S, Chevret S, Thomas X et al (2016) Rituximab in B‑lineage adult acute lymphoblastic leukemia. N Engl J Med 375:1044–1053. https://doi.org/10.1056/NEJMoa1605085

    Article  CAS  PubMed  Google Scholar 

  38. Moorman AV, Barretta E, Butler ER et al (2021) Prognostic impact of chromosomal abnormalities and copy number alterations in adult B‑cell precursor acute lymphoblastic leukaemia: a UKALL14 study. Leukemia. https://doi.org/10.1038/s41375-021-01448-2

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nagel I, Bartels M, Duell J et al (2017) Hematopoietic stem cell involvement in BCR-ABL1-positive ALL as a potential mechanism of resistance to blinatumomab therapy. Blood 130:2027–2031. https://doi.org/10.1182/blood-2017-05-782888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Neumann M, Bastian L, Hänzelmann S et al (2020) Molecular subgroups of T cell acute lymphoblastic leukemia in adults treated according to GMALL protocols. Blood 136:37–38. https://doi.org/10.1182/blood-2020-141921

    Article  Google Scholar 

  41. O’Connor D, Enshaei A, Bartram J et al (2018) Genotype-specific minimal residual disease interpretation improves stratification in pediatric acute lymphoblastic leukemia. J Clin Oncol 36:34–43. https://doi.org/10.1200/JCO.2017.74.0449

    Article  PubMed  Google Scholar 

  42. EuroClonality-NGS working group, Brüggemann M, Kotrová M et al (2019) Standardized next-generation sequencing of immunoglobulin and T‑cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS validation study. Leukemia 33:2241–2253. https://doi.org/10.1038/s41375-019-0496-7

    Article  CAS  Google Scholar 

  43. on behalf of the European Study Group on MRD detection in ALL (ESG-MRD-ALL), van der Velden VHJ, Cazzaniga G et al (2007) Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia 21:604–611. https://doi.org/10.1038/sj.leu.2404586

    Article  CAS  Google Scholar 

  44. Paietta E, Roberts KG, Wang V et al (2021) Molecular classification improves risk assessment in adult BCR-ABL1-negative B‑ALL. Blood 138:948–958. https://doi.org/10.1182/blood.2020010144

    Article  CAS  PubMed  Google Scholar 

  45. Pfeifer H, Cazzaniga G, van der Velden VHJ et al (2019) Standardisation and consensus guidelines for minimal residual disease assessment in Philadelphia-positive acute lymphoblastic leukemia (Ph + ALL) by real-time quantitative reverse transcriptase PCR of e1a2 BCR-ABL1. Leukemia 33:1910–1922. https://doi.org/10.1038/s41375-019-0413-0

    Article  CAS  PubMed  Google Scholar 

  46. Pikman Y, Tasian SK, Sulis ML et al (2021) Matched targeted therapy for pediatric patients with relapsed, refractory, or high-risk leukemias: a report from the LEAP consortium. Cancer Discov 11:1424–1439. https://doi.org/10.1158/2159-8290.CD-20-0564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pulsipher MA, Han X, Maude SL et al (2022) Next-generation sequencing of minimal residual disease for predicting relapse after tisagenlecleucel in children and young adults with acute Lymphoblastic leukemia. Blood Cancer Discov 3:66–81. https://doi.org/10.1158/2643-3230.BCD-21-0095

    Article  PubMed  Google Scholar 

  48. Raff T, Gökbuget N, Lüschen S et al (2007) Molecular relapse in adult standard-risk ALL patients detected by prospective MRD monitoring during and after maintenance treatment: data from the GMALL 06/99 and 07/03 trials. Blood 109:910–915. https://doi.org/10.1182/blood-2006-07-037093

    Article  CAS  PubMed  Google Scholar 

  49. Roberts KG, Li Y, Payne-Turner D et al (2014) Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 371:1005–1015. https://doi.org/10.1056/NEJMoa1403088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Roberts KG, Mullighan CG (2020) The biology of B‑progenitor acute lymphoblastic leukemia. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a034835

    Article  PubMed  Google Scholar 

  51. Schewe DM, Lenk L, Vogiatzi F et al (2019) Larotrectinib in TRK fusion-positive pediatric B‑cell acute lymphoblastic leukemia. Blood Adv 3:3499–3502. https://doi.org/10.1182/bloodadvances.2019000700

    Article  PubMed  PubMed Central  Google Scholar 

  52. Schultz L, Gardner R (2019) Mechanisms of and approaches to overcoming resistance to immunotherapy. Hematology. https://doi.org/10.1182/hematology.2019000018

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shah BD, Ghobadi A, Oluwole OO et al (2021) KTE-X19 for relapsed or refractory adult B‑cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet Lond Engl 398:491–502. https://doi.org/10.1016/S0140-6736(21)01222-8

    Article  CAS  Google Scholar 

  54. Shen Z, Gu X, Mao W et al (2018) Influence of pre-transplant minimal residual disease on prognosis after Allo-SCT for patients with acute lymphoblastic leukemia: systematic review and meta-analysis. BMC Cancer 18:755. https://doi.org/10.1186/s12885-018-4670-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stanulla M, Dagdan E, Zaliova M et al (2018) IKZF1plus defines a new minimal residual disease-dependent very-poor prognostic profile in pediatric B‑cell precursor acute Lymphoblastic leukemia. J Clin Oncol 36:1240–1249. https://doi.org/10.1200/JCO.2017.74.3617

    Article  CAS  PubMed  Google Scholar 

  56. Stratmann JA, von Rose AB, Koschade S et al (2019) Clinical and genetic characterization of de novo double-hit B cell precursor leukemia/lymphoma. Ann Hematol 98:647–656. https://doi.org/10.1007/s00277-018-03590-x

    Article  CAS  PubMed  Google Scholar 

  57. Suzuki K, Okuno Y, Kawashima N et al (2016) MEF2D-BCL9 fusion gene is associated with high-risk acute B‑cell precursor lymphoblastic leukemia in adolescents. J Clin Oncol 34:3451–3459. https://doi.org/10.1200/JCO.2016.66.5547

    Article  CAS  PubMed  Google Scholar 

  58. Tanasi I, Ba I, Sirvent N et al (2019) Efficacy of tyrosine kinase inhibitors in Ph-like acute lymphoblastic leukemia harboring ABL-class rearrangements. Blood 134:1351–1355. https://doi.org/10.1182/blood.2019001244

    Article  PubMed  Google Scholar 

  59. Theunissen P, Mejstrikova E, Sedek L et al (2017) Standardized flow cytometry for highly sensitive MRD measurements in B‑cell acute lymphoblastic leukemia. Blood 129:347–357. https://doi.org/10.1182/blood-2016-07-726307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yasuda T, Sanada M, Kawazu M et al (2021) Two novel high-risk adult B‑cell acute lymphoblastic leukemia subtypes with high expression of CDX2 and IDH1/2 mutations. Blood. https://doi.org/10.1182/blood.2021011921

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz Bastian.

Ethics declarations

Interessenkonflikt

L. Bastian, M. Brüggemann und C.D. Baldus geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastian, L., Brüggemann, M. & Baldus, C.D. Molekulare Diversität der akuten lymphoblastischen Leukämie. Onkologie 28, 492–503 (2022). https://doi.org/10.1007/s00761-022-01165-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-022-01165-0

Schlüsselwörter

Keywords

Navigation