Skip to main content
Log in

Is Next-Generation Sequencing the way to go for Residual Disease Monitoring in Acute Lymphoblastic Leukemia?

  • Review article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Minimal residual disease (MRD) is the most important independent prognostic factor in acute lymphoblastic leukemia (ALL). Since it has been implemented into in treatment stratification strategies, cure rates have improved significantly for all age groups. Real time quantitative (RQ)-PCR of clonal immunoglobulin and T-cell receptor gene rearrangements using allele-specific primers is currently regarded as the gold standard for MRD analysis in ALL, as it is not only highly sensitive and specific but also provides accurate MRD quantification. Following recent advances in next-generation sequencing (NGS), much attention has been devoted to the development of NGS-based MRD assays. This new technique can enhance sensitivity provided that sufficient numbers of cells are analyzed. Recent reports have shown that NGS-MRD also tends to be more specific for relapse prediction than RQ-PCR. In addition, NGS provides information on the physiological B- and T-cell repertoire during and after treatment, which has been shown to be prognostically relevant. However, before implementation of NGS-MRD detection in clinical practice, several issues must be addressed and the whole workflow needs to be standardized, including not only the analytical phase (spike-in calibrators, quality controls) but also the pre-analytical (e.g. sample preparation) and the post-analytical phases (e.g. bioinformatics pipeline, guidelines for correct data interpretation). These topics are currently addressed by a European network, the EuroClonality-NGS Consortium. In conclusion, NGS is a promising tool for MRD detection with the potential to overcome most of the limitations of RQ-PCR and to become the new gold standard for MRD detection in ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Faderl S, O’Brien S, Pui C-H, Stock W, Wetzler M, Hoelzer D, et al. Adult acute lymphoblastic leukemia: concepts and strategies. Cancer. 2010;116:1165–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Redaelli A, Laskin BL, Stephens JM, Botteman MF, Pashos CL. A systematic literature review of the clinical and epidemiological burden of acute lymphoblastic leukaemia (ALL). Eur J Cancer Care (Engl). 2005;14:53–62.

  3. Pui C-H, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med. 2006;354:166–78.

    Article  CAS  PubMed  Google Scholar 

  4. Siegel R, Miller K, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:29.

    Google Scholar 

  5. Gökbuget N, Raff R, Brügge-Mann M, Flohr T, Scheuring U, Pfeifer H, et al. Risk/MRD adapted GMALL trials in adult ALL. Ann Hematol. 2004;83(Suppl 1):S129–31.

    PubMed  Google Scholar 

  6. Conter V, Bartram CR, Valsecchi MG, Schrauder A, Panzer-Grumayer R, Moricke A, et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood. 2010;115:3206–14.

    Article  CAS  PubMed  Google Scholar 

  7. Stary J, Zimmermann M, Campbell M, Castillo L, Dibar E, Donska S, et al. Intensive chemotherapy for childhood acute lymphoblastic leukemia: Results of the randomized intercontinental trial ALL IC-BFM 2002. J Clin Oncol. 2014;32:174–84.

    Article  CAS  PubMed  Google Scholar 

  8. Vora A, Goulden N, Wade R, Mitchell C, Hancock J, Hough R, et al. Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial. Lancet Oncol. 2013;14:199–209.

    Article  CAS  PubMed  Google Scholar 

  9. Pieters R, de Groot-Kruseman H, Van der Velden V, Fiocco M, van den Berg H, de Bont E, et al. Successful therapy reduction and intensification for childhood acute lymphoblastic leukemia based on minimal residual disease monitoring: Study ALL10 From the Dutch Childhood Oncology Group. J Clin Oncol. 2016;34:2591–601.

    Article  PubMed  Google Scholar 

  10. Tzoneva G, Perez-Garcia A, Carpenter Z, Khiabanian H, Tosello V, Allegretta M, et al. Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL. Nat Med. 2013;19:368–71 (Nature Publishing Group).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Einsiedel HG, Von Stackelberg A, Hartmann R, Fengler R, Schrappe M, Janka-Schaub G, et al. Long-term outcome in children with relapsed ALL by risk-stratified salvage therapy: Results of trial Acute Lymphoblastic Leukemia-Relapse Study of the Berlin-Frankfurt-Münster Group 87. J Clin Oncol. 2005;23:7942–50.

    Article  PubMed  Google Scholar 

  12. van Dongen JJ, Seriu T, Panzer-Grumayer ER, Biondi A, Pongers-Willemse MJ, Corral L, et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet. 1998;352:1731–8.

    Article  PubMed  Google Scholar 

  13. Nyvold C, Madsen HO, Ryder LP, Seyfarth J, Svejgaard A, Clausen N, et al. Precise quantification of minimal residual disease at day 29 allows identification of children with acute lymphoblastic leukemia and an excellent outcome. Blood. 2002;99:1253–8.

    Article  CAS  PubMed  Google Scholar 

  14. Cavé H, Der Werff Van, Ten Bosch J, Suciu S, Guidal C, Waterkeyn C, Otten J, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. N Engl J Med. 1998;339:591–8.

    Article  PubMed  Google Scholar 

  15. Borowitz MJ, Devidas M, Hunger SP, Bowman WP, Carroll AJ, Carroll WL, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s Oncology Group study. Blood. 2008;111:5477–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bruggemann M, Raff T, Flohr T, Gokbuget N, Nakao M, Droese J, et al. Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood. 2006;107:1116–23.

    Article  PubMed  Google Scholar 

  17. Bassan R, Spinelli O, Oldani E, Intermesoli T, Tosi M, Peruta B, et al. Improved risk classification for risk-specific therapy based on the molecular study of minimal residual disease (MRD) in adult acute lymphoblastic leukemia (ALL). Blood. 2009;113:4153–62.

    Article  CAS  PubMed  Google Scholar 

  18. Brüggemann M, Raff T, Kneba M. Has MRD monitoring superseded other prognostic factors in adult ALL? Blood. 2012;120:4470–81.

    Article  PubMed  Google Scholar 

  19. Vidriales M-B, Pérez JJ, López-Berges MC, Gutiérrez N, Ciudad J, Lucio P, et al. Minimal residual disease in adolescent (older than 14 years) and adult acute lymphoblastic leukemias: early immunophenotypic evaluation has high clinical value. Blood. 2003;101:4695–700.

    Article  CAS  PubMed  Google Scholar 

  20. Mortuza FY, Papaioannou M, Moreira IM, Coyle LA, Gameiro P, Gandini D, et al. Minimal residual disease tests provide an independent predictor of clinical outcome in adult acute lymphoblastic leukemia. J Clin Oncol. 2002;20:1094–104.

    Article  PubMed  Google Scholar 

  21. Coustan-Smith E, Sancho J, Behm FG, Hancock ML, Razzouk BI, Ribeiro RC, et al. Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood. 2002;100:52–8.

    Article  CAS  PubMed  Google Scholar 

  22. Panzer-Grumayer ER, Schneider M, Panzer S, Fasching K, Gadner H, Panzer-Grümayer ER, et al. Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood. 2000;95:790–4.

    CAS  PubMed  Google Scholar 

  23. Eckert C, Biondi A, Seeger K, Cazzaniga G, Hartmann R, Beyermann B, et al. Prognostic value of minimal residual disease in relapsed childhood acute lymphoblastic leukaemia. Lancet. 2001;358:1239–41.

  24. Coustan-Smith E, Gajjar A, Hijiya N, Razzouk BI, Ribeiro RC, Rivera GK, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia after first relapse. Leukemia. 2004;18:499–504 (Nature Publishing Group).

    Article  CAS  PubMed  Google Scholar 

  25. Gökbuget N, Stanze D, Beck J, Diedrich H, Horst H-A, Hüttmann A, et al. Outcome of relapsed adult lymphoblastic leukemia depends on response to salvage chemotherapy, prognostic factors, and performance of stem cell transplantation. Blood. 2012;120:2032–41.

    Article  PubMed  Google Scholar 

  26. Sramkova L, Muzikova K, Fronkova E, Krejci O, Sedlacek P, Formankova R, et al. Detectable minimal residual disease before allogeneic hematopoietic stem cell transplantation predicts extremely poor prognosis in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2007;48:93–100.

    Article  PubMed  Google Scholar 

  27. Krejci O, van der Velden VHJ, Bader P, Kreyenberg H, Goulden N, Hancock J, et al. Level of minimal residual disease prior to haematopoietic stem cell transplantation predicts prognosis in paediatric patients with acute lymphoblastic leukaemia: a report of the Pre-BMT MRD Study Group. Bone Marrow Transplant. 2003;32:849–51.

    Article  CAS  PubMed  Google Scholar 

  28. Bader P, Hancock J, Kreyenberg H, Goulden NJ, Niethammer D, Oakhill A, et al. Minimal residual disease (MRD) status prior to allogeneic stem cell transplantation is a powerful predictor for post-transplant outcome in children with ALL. Leukemia. 2002;16:1668–72.

    Article  CAS  PubMed  Google Scholar 

  29. Spinelli O, Peruta B, Tosi M, Guerini V, Salvi A, Zanotti MC, et al. Clearance of minimal residual disease after allogeneic stem cell transplantation and the prediction of the clinical outcome of adult patients with high-risk acute lymphoblastic leukemia. Haematologica. 2007;92:612–8.

    Article  PubMed  Google Scholar 

  30. van der Velden VHJ, van Dongen JJM. MRD detection in acute lymphoblastic leukemia patients using Ig/TCR gene rearrangements as targets for real-time quantitative PCR. Methods Mol Biol. 2009;538:115–50.

    Article  PubMed  Google Scholar 

  31. Beishuizen A, Verhoeven MA, van Wering ER, Hählen K, Hooijkaas H, van Dongen JJ. Analysis of Ig and T-cell receptor genes in 40 childhood acute lymphoblastic leukemias at diagnosis and subsequent relapse: implications for the detection of minimal residual disease by polymerase chain reaction analysis. Blood. 1994;83:2238–47.

  32. Szczepański T, Pongers-Willemse MJ, Langerak AW, van Dongen JJ. Unusual immunoglobulin and T-cell receptor gene rearrangement patterns in acute lymphoblastic leukemias. Curr Top Microbiol Immunol. 1999;246:205–215.

  33. Szczepanski T, Willemse MJ, Brinkhof B, Van Wering ER, Van Der Burg M, Van Dongen JJM. Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood. 2002;99:2315–23.

    Article  CAS  PubMed  Google Scholar 

  34. Germano G, del Giudice L, Palatron S, Giarin E, Cazzaniga G, Biondi A, et al. Clonality profile in relapsed precursor-B-ALL children by GeneScan and sequencing analyses. Consequences on minimal residual disease monitoring. Leukemia. 2003;17:1573–82 (Nature Publishing Group).

    Article  CAS  PubMed  Google Scholar 

  35. Szczepański T, van der Velden VHJ, Raff T, Jacobs DCH, van Wering ER, Brüggemann M, et al. Comparative analysis of T-cell receptor gene rearrangements at diagnosis and relapse of T-cell acute lymphoblastic leukemia (T-ALL) shows high stability of clonal markers for monitoring of minimal residual disease and reveals the occurrence of second T-AL. Leukemia. 2003;17:2149–56.

    Article  PubMed  Google Scholar 

  36. Szczepański T. Why and how to quantify minimal residual disease in acute lymphoblastic leukemia? Leukemia. 2007;21:622–6.

    PubMed  Google Scholar 

  37. Gabert J, Beillard E, van der Velden VHJ, Bi W, Grimwade D, Pallisgaard N, et al. Standardization and quality control studies of “real-time” quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—a Europe Against Cancer program. Leukemia. 2003;17:2318–57.

    Article  CAS  PubMed  Google Scholar 

  38. van der Velden VHJ, Boeckx N, Gonzalez M, Malec M, Barbany G, Lion T, et al. Differential stability of control gene and fusion gene transcripts over time may hamper accurate quantification of minimal residual disease—a study within the Europe Against Cancer Program. Leukemia. 2004;18:884–6 (Nature Publishing Group).

    Article  PubMed  Google Scholar 

  39. van Dongen JJ, Wolvers-Tettero IL. Analysis of immunoglobulin and T cell receptor genes. Part I: basic and technical aspects. Clin Chim Acta. 1991;198:1–91.

    Article  PubMed  Google Scholar 

  40. van Dongen JJ. Analysis of immunoglobulin genes and T cell receptor genes as a diagnostic tool for the detection of lymphoid malignancies. Neth J Med. 1987;31:201–9.

    PubMed  Google Scholar 

  41. Pongers-Willemse MJ, Seriu T, Stolz F, d’Aniello E, Gameiro P, Pisa P, et al. Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 CONCERTED ACTION: investiga. Leukemia. 1999;13:110–8.

    Article  CAS  PubMed  Google Scholar 

  42. Flohr T, Schrauder A, Cazzaniga G, Panzer-Grümayer R, van der Velden V, Fischer S, et al. Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia. 2008;22:771–82 (Nature Publishing Group).

    Article  CAS  PubMed  Google Scholar 

  43. Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res. 1996;6:986–94.

    Article  CAS  PubMed  Google Scholar 

  44. Pongers-Willemse MJ, Verhagen OJ, Tibbe GJ, Wijkhuijs AJ, de Haas V, Roovers E, et al. Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia. 1998;12:2006–14.

    Article  CAS  PubMed  Google Scholar 

  45. Brüggemann M, Droese J, Bolz I, Lüth P, Pott C, von Neuhoff N, et al. Improved assessment of minimal residual disease in B cell malignancies using fluorogenic consensus probes for real-time quantitative PCR. Leukemia. 2000;14:1419–25.

    Article  PubMed  Google Scholar 

  46. Verhagen OJ, Willemse MJ, Breunis WB, Wijkhuijs AJ, Jacobs DC, Joosten SA, et al. Application of germline IgH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia. 2000;14:1426–35.

    Article  CAS  PubMed  Google Scholar 

  47. van der Velden VHJ, Cazzaniga G, Schrauder A, Hancock J, Bader P, Panzer-Grumayer ER, et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia. 2007;21:604–11.

    PubMed  Google Scholar 

  48. Campana D, Coustan-Smith E. Detection of minimal residual disease in acute leukemia by flow cytometry. Cytometry. 1999;38:139–52 (John Wiley & Sons, Inc.).

  49. Ryan J, Quinn F, Meunier A, Boublikova L, Crampe M, Tewari P, et al. Minimal residual disease detection in childhood acute lymphoblastic leukaemia patients at multiple time-points reveals high levels of concordance between molecular and immunophenotypic approaches. Br J Haematol. 2009;144:107–15.

    Article  PubMed  Google Scholar 

  50. Gaipa G, Cazzaniga G, Valsecchi MG, Panzer-Grumayer R, Buldini B, Silvestri D, et al. Time point-dependent concordance of flow cytometry and real-time quantitative polymerase chain reaction for minimal residual disease detection in childhood acute lymphoblastic leukemia. Haematologica. 2012;97:1582–93.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Denys B, van der Sluijs-Gelling AJ, Homburg C, van der Schoot CE, de Haas V, Philippé J, et al. Improved flow cytometric detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia. 2013;27:635–41.

    Article  CAS  PubMed  Google Scholar 

  52. Kalina T, Flores-Montero J, van der Velden VHJ, Martin-Ayuso M, Böttcher S, Ritgen M, et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 2012;26:1986–2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. van Dongen JJM, Lhermitte L, Böttcher S, Almeida J, van der Velden VHJ, Flores-Montero J, et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia. 2012;26:1908–75.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Theunissen P, Mejstrikova E, Sedek L, van der Sluijs-Gelling AJ, Gaipa G, Bartels M, et al. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood. 2017;129:347–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. van Dongen JJM, van der Velden VHJ, Brüggemann M, Orfao A. Minimal residual disease (MRD) diagnostics in acute lymphoblastic leukemia (ALL): need for sensitive, fast and standardized technologies. Blood. 2015;125:3996–4009.

    Article  PubMed  PubMed Central  Google Scholar 

  56. van Dongen JJM, Langerak a W, Brüggemann M, Evans PAS, Hummel M, Lavender FL, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17:2257–317.

  57. Szczepanski T, Van Der Velden VHJ, Hoogeveen PG, De Bie M, Jacobs CH, Van Wering ER, et al. Vdelta2-Jalpha rearrangements are frequent in precursor-B-acute lymphoblastic leukemia but rare in normal lymphoid cells. Blood. 2004;103:3798–804.

    Article  CAS  PubMed  Google Scholar 

  58. Ferret Y, Caillault A, Sebda S, Duez M, Grardel N, Duployez N, et al. Multi-loci diagnosis of acute lymphoblastic leukaemia with high-throughput sequencing and bioinformatics analysis. Br J Haematol. 2016;173:413–20.

    Article  CAS  PubMed  Google Scholar 

  59. Ladetto M, Bruggemann M, Monitillo L, et al. Next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in B-cell disorders. Leukemia. 2014;28:1299–307.

    Article  CAS  PubMed  Google Scholar 

  60. Faham M, Zheng J, Moorhead M, Carlton VE, Stow P, Coustan-Smith E, et al. Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 2012;120:5173–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pulsipher MA, Carlson C, Langholz B, Wall DA, Schultz KR, Bunin N, et al. IgH-V(D)J NGS-MRD measurement pre- and early post- allo-transplant defines very low and very high risk ALL patients. Blood. 2015;125:3501–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sekiya Y, Xu Y, Muramatsu H, Okuno Y, Narita A, Suzuki K, et al. Clinical utility of next-generation sequencing-based minimal residual disease in paediatric B-cell acute lymphoblastic leukaemia. Br J Haematol. 2016;176:248–57.

    Article  PubMed  Google Scholar 

  63. Wu D, Emerson RO, Sherwood A, Loh ML, Angiolillo A, Howie B, et al. Detection of minimal residual disease in B lymphoblastic leukemia by high-throughput sequencing of IgH. Clin Cancer Res. 2014;20:4540–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wren D, Walker BA, Bruggemann M, Catherwood MA, Pott C, Stamatopoulos K, et al. Comprehensive translocation and clonality detection in lymphoproliferative disorders by next-generation sequencing. Haematologica. 2017;102:57–60.

    Article  Google Scholar 

  65. Basso G, Veltroni M, Valsecchi MG, Dworzak MN, Ratei R, Silvestri D, et al. Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol. 2009;27:5168–74.

    Article  PubMed  Google Scholar 

  66. Thol F, Kolking B, Damm F, Reinhardt K, Klusmann J-H, Reinhardt D, et al. Next-generation sequencing for minimal residual disease monitoring in acute myeloid leukemia patients with FLT3-ITD or NPM1 mutations. Genes Chromosomes Cancer. 2012;51:689–95.

    Article  CAS  PubMed  Google Scholar 

  67. Logan AC, Vashi N, Faham M, Carlton V, Kong K, Buno I, et al. Immunoglobulin and T cell receptor gene high-throughput sequencing quantifies minimal residual disease in acute lymphoblastic leukemia and predicts post-transplantation relapse and survival. Biol Blood Marrow Transpl. 2014;20:1307–13.

    Article  CAS  Google Scholar 

  68. van der Velden VHJ, Jacobs DCH, Wijkhuijs AJM, Comans-Bitter WM, Willemse MJ, Hählen K, et al. Minimal residual disease levels in bone marrow and peripheral blood are comparable in children with T cell acute lymphoblastic leukemia (ALL), but not in precursor-B-ALL. Leukemia. 2002;16:1432–6.

    Article  PubMed  Google Scholar 

  69. Kotrova M, Muzikova K, Mejstrikova E, Novakova M, Bakardjieva-Mihaylova V, Fiser K, et al. The predictive strength of next-generation sequencing MRD detection for relapse compared with current methods in childhood ALL. Blood. 2015;126:1045–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fronkova E, Muzikova K, Mejstrikova E, Kovac M, Formankova R, Sedlacek P, et al. B-cell reconstitution after allogeneic SCT impairs minimal residual disease monitoring in children with ALL. Bone Marrow Transpl. 2008;42:187–96.

    Article  CAS  Google Scholar 

  71. van der Velden VHJ, Wijkhuijs JM, van Dongen JJM. Non-specific amplification of patient-specific Ig/TCR gene rearrangements depends on the time point during therapy: implications for minimal residual disease monitoring. Leukemia. 2008;22:641–4 (Nature Publishing Group).

    Article  PubMed  Google Scholar 

  72. Kotrova M, Velden van der VHJ, van Dongen JJM, Formankova R, Sedlacek P, Brüggemann M, et al. Next-generation sequencing indicates false-positive MRD results and better predicts prognosis after SCT in patients with childhood ALL. Bone Marrow Transplant. 2017 (in press).

  73. Wu D, Sherwood A, Fromm JR, Winter SS, Dunsmore KP, Loh ML, et al. High-throughput sequencing detects minimal residual disease in acute T lymphoblastic leukemia. Sci Transl Med. 2012;4:134ra63.

    Article  PubMed  Google Scholar 

  74. Gawad C, Pepin F, Carlton VEH, Klinger M, Logan AC, David B, et al. Massive evolution of the immunoglobulin heavy chain locus in children with B precursor acute lymphoblastic leukemia Massive evolution of the immunoglobulin heavy chain locus in children with B precursor acute lymphoblastic leukemia. 2012;120:4407–17.

  75. Rawstron AC, Bennett FL, O’Connor SJM, Kwok M, Fenton JAL, Plummer M, et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med. 2008;359:575–83.

    Article  CAS  PubMed  Google Scholar 

  76. Langerak AW, Sandberg Y, van Dongen JJM. Spectrum of T-large granular lymphocyte lymphoproliferations: ranging from expanded activated effector T cells to T-cell leukaemia. Br J Haematol. 2003;123:561–2.

    Article  PubMed  Google Scholar 

  77. Sellner L, Brüggemann M, Schlitt M, Knecht H, Herrmann D, Reigl T, et al. GvL effects in T-prolymphocytic leukemia: evidence from MRD kinetics and TCR repertoire analyses. Bone Marrow Transpl. 2016;1–8.

  78. Kircher M, Sawyer S, Meyer M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 2012;40:e3.

    Article  CAS  PubMed  Google Scholar 

  79. Kircher M. Analysis of high-throughput ancient DNA sequencing data. Methods Mol Biol. 2012;840:197–228.

    Article  CAS  PubMed  Google Scholar 

  80. Nelson MC, Morrison HG, Benjamino J, Grim SL, Graf J. Analysis, optimization and verification of Illumina-generated 16S rRNA gene amplicon surveys. PLoS One. 2014;9:e94249.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Quail MA, Smith M, Jackson D, Leonard S, Skelly T, Swerdlow HP, et al. SASI-Seq: sample assurance Spike-Ins, and highly differentiating 384 barcoding for Illumina sequencing. BMC Genomics. 2014;15:110.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wright ES, Vetsigian KH. Quality filtering of Illumina index reads mitigates sample cross-talk. BMC Genomics. 2016;17:876.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Bartram J, Mountjoy E, Brooks T, Hancock J, Williamson H, Wright G, et al. Accurate sample assignment in a multiplexed, ultrasensitive, high-throughput sequencing assay for minimal residual disease. J Mol Diagn. 2016;18:494–506.

    Article  CAS  PubMed  Google Scholar 

  84. Carlson CS, Emerson RO, Sherwood AM, Desmarais C, Chung MW, Parsons JM, et al. Using synthetic templates to design an unbiased multiplex PCR assay. Nat Commun. 2013;4:2680.

    Article  PubMed  Google Scholar 

  85. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368:1509–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kotrova M, Knecht H, Bartram J, Bystry V, Cazzaniga G, Fazio G, et al. Library preparation is the major factor affecting differences in results of immunoglobulin gene rearrangements detection on two major next-generation sequencing platforms. Blood. 2015:1411 (American Society of Hematology).

  87. Duez M, Giraud M, Herbert R, Rocher T, Salson M, Thonier F, et al. Vidjil: a web platform for analysis of high-throughput repertoire sequencing. PLoS One. 2016;11:e0166126 (Poon AFY, editor. Public Library of Science).

  88. Bystry V, Reigl T, Krejci A, Demko M, Hanakova B, Grioni A, et al. ARResT/Interrogate: an interactive immunoprofiler for Ig/TR NGS data. Bioinformatics. 2016;33:btw634.

  89. Li S, Lefranc M-P, Miles JJ, Alamyar E, Giudicelli V, Duroux P, et al. IMGT/HighV QUEST paradigm for T cell receptor IMGT clonotype diversity and next-generation repertoire immunoprofiling. Nat Commun. 2013;4:2333.

    PubMed  PubMed Central  Google Scholar 

  90. Bolotin DA, Shugay M, Mamedov IZ, Putintseva E V, Turchaninova M a, Zvyagin I V, et al. MiTCR: software for T-cell receptor sequencing data analysis. Nat Methods. 2013;10:813–4 (Nature Publishing Group).

  91. Alamyar E, Duroux P, Lefranc M-P, Giudicelli V. IMGT(®) tools for the nucleotide analysis of immunoglobulin (IG) and T cell receptor (TR) V-(D)-J repertoires, polymorphisms, and IG mutations: IMGT/V-QUEST and IMGT/HighV-QUEST for NGS. Methods Mol Biol. 2012;882:569–604.

    Article  CAS  PubMed  Google Scholar 

  92. Aouinti S, Giudicelli V, Duroux P, Malouche D, Kossida S, Lefranc M-P. IMGT/StatClonotype for pairwise evaluation and visualization of NGS IG and TR IMGT clonotype (AA) diversity or expression from IMGT/HighV-QUEST. Front Immunol. 2016;7:339.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lefranc M-P. Immunoglobulin and T cell receptor genes: IMGT(®) and the birth and rise of immunoinformatics. Front Immunol. 2014;5:22.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Lefranc M-P, Giudicelli V, Duroux P, Jabado-Michaloud J, Folch G, Aouinti S, et al. IMGT(R), the international ImMunoGeneTics information system(R) 25 years on. Nucleic Acids Res. 2015;43:D413–22.

    Article  CAS  PubMed  Google Scholar 

  95. Giraud M, Salson M, Duez M, Villenet C, Quief S, Caillault A, et al. Fast multiclonal clusterization of V(D)J recombinations from high-throughput sequencing. BMC Genomics. 2014;15:409.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Langerak AW, Brüggemann M, Davi F, Darzentas N, Gonzalez D, Cazzaniga G, et al. High throughput immunogenetics for clinical and research applications in immunohematology: potential and challenges. J Immunol. 2017 (in press).

  97. Tie J, Wang Y, Tomasetti C, Li L, Springer S, Kinde I, et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med. 2016;8:346ra92.

  98. Diaz LA, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32:579–86.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Roschewski M, Dunleavy K, Pittaluga S, Moorhead M, Pepin F, Kong K, et al. Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study. Lancet. Oncol. 2015;16:541–9.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Scherer F, Kurtz DM, Newman AM, Stehr H, Craig AFM, Esfahani MS, et al. Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA. Sci Transl Med. 2016;8:364ra155.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Brüggemann.

Ethics declarations

Funding

This work was supported by a grant from the Ministry of Health of the Czech Republic (AZV 16-32568A).

Conflict of interest

The authors (MK, JT, MK and MB) declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotrova, M., Trka, J., Kneba, M. et al. Is Next-Generation Sequencing the way to go for Residual Disease Monitoring in Acute Lymphoblastic Leukemia?. Mol Diagn Ther 21, 481–492 (2017). https://doi.org/10.1007/s40291-017-0277-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-017-0277-9

Keywords

Navigation