Skip to main content
Log in

Innovative Operationsroboter und Operationstechnik für den Einsatz am oberen Gastrointestinaltrakt

Innovative robotic systems and surgical techniques for use in the upper gastrointestinal tract

  • Roboterchirurgie
  • Published:
Wiener klinisches Magazin Aims and scope

Zusammenfassung

Hintergrund

In der Chirurgie des oberen Gastrointestinaltrakts kommen zunehmend minimal-invasive Verfahren zum Einsatz. Bereits 2003 konnte die erste roboterassistierte Ösophagektomie durchgeführt werden. Seit dieser Zeit zeigten etliche Studien die Vorteile der robotischen Chirurgie am oberen Gastrointestinaltrakt. Ziel dieses Übersichtsartikels ist die Darstellung unterschiedlicher Operationsroboter, innovativer Operationstechniken und Anwendung künstlicher Intelligenz in der Ösophagus- und Magenchirurgie.

Methode

Diese Arbeit basiert auf einer selektiven Literaturrecherche in der Datenbank PubMed unter Verwendung der Suchbegriffe „RAMIE“, „minimally invasive esophagectomy“, „gastrectomy“, „virtual reality“ und „ergonomics“.

Ergebnisse

Bereits im TIME Trial ergab der Einsatz minimal-invasiver Verfahren eine Reduktion von pulmonalen Komplikationen, des Blutverlusts und der Krankenhausverweildauer in der Ösophaguschirurgie zeigen. Darauf baute die ROBOT-Studie auf, darin führte der robotisch durchgeführte thorakale Teil der Ösophagektomie – ebenso wie im TIME Trial – zu einer Reduktion von postoperativen Schmerzen sowie pulmonalen Komplikationen im Vergleich zur offenen Methode. Dieser Übersichtsartikel geht auf die Robotersysteme Da Vinci Surgical System (Intuitive Surgical, Inc., Sunnyvale, CA, USA), Hugo™ RAS System (Medtronic plc, Dublin, Irland), Versius, Dexter® (Fa. Distalmotion, Lausanne, Schweiz), Senhance® Surgical System (Asensus Surgical US, Inc., Durham, NC, USA) sowie ArtiSential (Fa. LivsMed, Seongnam, Republic of Korea) ein.

Schlussfolgerung

Neue robotische Operationsmethoden haben das Potenzial, das Patientenoutcome, aber auch die Arbeitsbedingungen von Chirurgen weiter signifikant zu verbessern. Zukünftige Entwicklungen, wie der Einsatz von künstlicher Intelligenz sowie die vermehrte Verbreitung von robotischen Systemen, werden dieses Feld weiter voranbringen.

Abstract

Background

In the field of upper gastrointestinal surgery, the use of minimally invasive technology is increasing. In 2003 the first robot-assisted esophagectomy was performed. Since then, multiple studies have demonstrated the benefit of robotic surgery in the upper gastrointestinal tract. In this article different surgical robots, innovative surgical techniques as well as application of artificial intelligence in esophageal and gastric surgery are presented.

Methods

A selective literature research was performed in PubMed using the following search items: RAMIE, esophagectomy, gastrectomy, virtual reality, and ergonomics.

Results

The TIME trial showed a reduction of pulmonary complications, blood loss, and length of hospital stay through the application of minimally invasive techniques during esophagectomy. Furthermore, the robotically performed thoracic part of the esophagectomy—shown in the ROBOT trial—led to a reduction of postoperative pain and pulmonary complications compared to the open method. In this article, the following robotic systems are described: Da Vinci Surgical System (Intuitive Surgical, Inc., Sunnyvale, CA, USA), Hugo™ RAS System (Medtronic plc, Dublin, Ireland), Versius (CMR Surgical, Cambridge, UK), Dexter® (Distalmotion, Lausanne, Switzerland), Senhance® Surgical System (Asensus Surgical, Durham, NC, USA), and ArtiSential (LivsMed, Seongnam, Republic of Korea).

Conclusion

Robotic assisted surgery has the potential to further improve patients’ outcomes and the surgeons’ working conditions. New developments such as artificial intelligence and increasing use of robotic systems may further advance this field of surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Shapiro J, van Lanschot JJB, Hulshof MCCM, van Hagen P, van Berge Henegouwen MI, Wijnhoven BPL et al (2015) Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): long-term results of a randomised controlled trial. Lancet Oncol 16(9):1090–1098

    Article  PubMed  Google Scholar 

  2. Porschen R, Fischbach W, Gockel I, Hollerbach S, Hölscher A, Jansen PL et al (2022) S3-Leitlinie – Diagnostik und Therapie der Plattenepithelkarzinome und Adenokarzinome des ösophagus. Z Gastroenterol 57(3):336–418

    Google Scholar 

  3. Schmidt T, Babic B, Bruns CJ, Fuchs HF (2021) Surgical treatment of esophageal cancer-new technologies, modern concepts. Chirurg 92(12):1100–1106

    Article  PubMed  PubMed Central  Google Scholar 

  4. Babic B, Fuchs HF, Bruns CJ (2020) Neoadjuvant chemoradiotherapy or chemotherapy for locally advanced esophageal cancer? Chirurg 91(5):379–383

    Article  CAS  PubMed  Google Scholar 

  5. Leal Ghezzi T, Campos Corleta O (2016) 30 years of robotic surgery. World J Surg 40(10):2550–2557

    Article  PubMed  Google Scholar 

  6. Himpens J, Leman G, Cadiere GB (1998) Telesurgical laparoscopic cholecystectomy. Surg Endosc 12:1091

    Article  CAS  PubMed  Google Scholar 

  7. Horgan S, Berger RA, Elli EF, Espat NJ (2003) Robotic-assisted minimally invasive transhiatal esophagectomy. Am Surg 69(7):624–626

    Article  PubMed  Google Scholar 

  8. Szold A, Bergamaschi R, Broeders I, Dankelman J, Forgione A, Langø T et al (2015) European association of endoscopic surgeons (EAES) consensus statement on the use of robotics in general surgery. Surg Endosc 29(2):253–288

    Article  PubMed  Google Scholar 

  9. Schröder W, Gisbertz SS, Voeten DM, Gutschow CA, Fuchs HF, van Berge Henegouwen MI (2021) Surgical therapy of esophageal adenocarcinoma—current standards and future perspectives. Cancers (Basel) 13(22):1–18

    Article  Google Scholar 

  10. Biere SSAY, van Berge Henegouwen MI, Maas KW, Bonavina L, Rosman C, Garcia JR et al (2012) Minimally invasive versus open oesophagectomy for patients with oesophageal cancer: a multicentre, open-label, randomised controlled trial. Lancet 379(9829):1887–1892

    Article  PubMed  Google Scholar 

  11. Mariette C, Markar SR, Dabakuyo-Yonli TS, Meunier B, Pezet D, Collet D et al (2019) Hybrid minimally invasive esophagectomy for esophageal cancer. N Engl J Med 380(2):152–162

    Article  PubMed  Google Scholar 

  12. van der Sluis PC, van der Horst S, May AM, Schippers C, Brosens LAA, Joore HCA et al (2019) Robot-assisted minimally invasive thoracolaparoscopic esophagectomy versus open transthoracic esophagectomy for resectable esophageal cancer: a randomized controlled trial. Ann Surg 269(4):621–630

    Article  PubMed  Google Scholar 

  13. Tagkalos E, van der Sluis PC, Berlth F, Poplawski A, Hadzijusufovic E, Lang H et al (2021) Robot-assisted minimally invasive thoraco-laparoscopic esophagectomy versus minimally invasive esophagectomy for resectable esophageal adenocarcinoma, a randomized controlled trial (ROBOT‑2 trial). BMC Cancer 21(1):1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Urbanski A, Babic B, Schröder W, Schiffmann L, Müller DT, Bruns CJ et al (2021) New techniques and training methods for robot-assisted surgery and cost-benefit analysis of Ivor Lewis esophagectomy. Chirurg 92(2):97–101

    Article  PubMed  Google Scholar 

  15. Gurusamy KS, Pallari E, Midya S, Mughal M (2016) Laparoscopic versus open transhiatal oesophagectomy for oesophageal cancer. Cochrane Database Syst Rev 3(3):CD11390

    PubMed  Google Scholar 

  16. Wong SW, Ang ZH, Yang PF, Crowe P (2022) Robotic colorectal surgery and ergonomics. J Robot Surg 16(2):241–246

    Article  PubMed  Google Scholar 

  17. Park A, Lee G, Seagull FJ, Meenaghan N, Dexter D (2010) Patients benefit while surgeons suffer: an impending epidemic. J Am Coll Surg 210(3):306–313

    Article  PubMed  Google Scholar 

  18. Epstein S, Sparer EH, Tran BN, Ruan QZ, Dennerlein JT, Singhal D et al (2018) Prevalence of work-related musculoskeletal disorders among surgeons and interventionalists: a systematic review and meta-analysis. JAMA Surg 153(2):e174947

    Article  PubMed  Google Scholar 

  19. Yang Y, Li B, Yi J, Hua R, Chen H, Tan L et al (2022) Robot-assisted versus conventional minimally invasive esophagectomy for resectable esophageal squamous cell carcinoma: early results of a multicenter randomized controlled trial: the RAMIE trial. Ann Surg 275(4):646–653

    Article  PubMed  Google Scholar 

  20. Babic B, Müller DT, Jung J‑O, Schiffmann LM, Grisar P, Schmidt T et al (2022) Robot-assisted minimally invasive esophagectomy (RAMIE) vs. hybrid minimally invasive esophagectomy: propensity score matched short-term outcome analysis of a European high-volume center. Surg Endosc 36(10):7747–7755

    Article  PubMed  PubMed Central  Google Scholar 

  21. Müller DT, Babic B, Herbst V, Gebauer F, Schlößer H, Schiffmann L et al (2020) Does circular stapler size in surgical management of esophageal cancer affect anastomotic leak rate? 4‑year experience of a European high-volume center. Cancers (Basel) 12(11):3474. https://doi.org/10.3390/cancers12113474

    Article  PubMed  Google Scholar 

  22. Dreifuss NH, Cubisino A, Schlottmann F, Giulianotti PC (2022) Robotic-assisted central pancreatectomy: a minimally invasive approach for benign and low-grade lesions. Surg Oncol 41:101736

    Article  PubMed  Google Scholar 

  23. Ribeiro U, Dias AR, Ramos MFKP, Yagi OK, Oliveira RJ, Pereira MA et al (2022) Short-term surgical outcomes of robotic gastrectomy compared to open gastrectomy for patients with gastric cancer: a randomized trial. J Gastrointest Surg. https://doi.org/10.1007/s11605-022-05448-0

    Article  PubMed  Google Scholar 

  24. Ma J, Li X, Zhao S, Zhang R, Yang D (2020) Robotic versus laparoscopic gastrectomy for gastric cancer: a systematic review and meta-analysis. World J Surg Oncol 18(1):306

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lu J, Zheng C‑H, Xu B‑B, Xie J‑W, Wang J‑B, Lin J‑X et al (2021) Assessment of robotic versus laparoscopic distal gastrectomy for gastric cancer: a randomized controlled trial. Ann Surg 273(5):858–867

    Article  PubMed  Google Scholar 

  26. Mönig S, Ott K, Gockel I, Lorenz D, Ludwig K, Messmann H et al (2020) S3 guidelines on gastric cancer-diagnosis and treatment of adenocarcinoma of the stomach and esophagogastric junction : Version 2.0-August 2019. AWMF register number: 032/009OL. Chirurg 91(1):37–40

    Article  PubMed  Google Scholar 

  27. El Dahdah J, Halabi M, Kamal J, Zenilman ME, Moussa H (2022) Initial experience with a novel robotic surgical system in abdominal surgery. J Robot Surg. https://doi.org/10.1007/s11701-022-01471-0

    Article  PubMed  Google Scholar 

  28. Broderick RC, Horgan S, Fuchs HF (2020) Robotic transhiatal esophagectomy. Dis Esophagus 33(2):doaa37. https://doi.org/10.1093/dote/doaa037

    Article  PubMed  Google Scholar 

  29. Khidir N, Gagner M, El Matbouly M, El Ansari W, Billy H, Karam M et al (2020) Single-port sleeve gastrectomy compared with conventional laparoscopic sleeve gastrectomy: 5‑year follow-up of weight loss, comorbidity resolution, and cost. Surg Innov 27(3):265–271

    Article  PubMed  Google Scholar 

  30. Darwich I, Abuassi M, Aliyev R, Scheidt M, Barganab A, Stephan D et al (2022) Single-center results of colorectal procedures performed with fully articulated laparoscopic Artisential® devices. Surg Technol Int. https://doi.org/10.52198/22.STI.41.GS1605

    Article  PubMed  Google Scholar 

  31. Fuchs HF, Müller DT, Leers JM, Schröder W, Bruns CJ (2019) Modular step-up approach to robot-assisted transthoracic esophagectomy—experience of a German high volume center. Transl Gastroenterol Hepatol 4:62

    Article  PubMed  PubMed Central  Google Scholar 

  32. de Groot EM, Kuiper GM, van der Veen A, Fourie L, Goense L, van der Horst S et al (2022) Indocyanine green fluorescence in robot-assisted minimally invasive esophagectomy with intrathoracic anastomosis: a prospective study. Updates Surg. https://doi.org/10.1007/s13304-022-01329-y

    Article  PubMed  PubMed Central  Google Scholar 

  33. Noma K, Shirakawa Y, Kanaya N, Okada T, Maeda N, Ninomiya T et al (2018) Visualized evaluation of blood flow to the gastric conduit and complications in esophageal reconstruction. J Am Coll Surg 226(3):241–251

    Article  PubMed  Google Scholar 

  34. Hosogi H, Yagi D, Sakaguchi M, Akagawa S, Tokoro Y, Kanaya S (2021) Upper mediastinal lymph node dissection based on mesenteric excision in esophageal cancer surgery: confirmation by near-infrared image-guided lymphatic mapping and the impact on locoregional control. Esophagus 18(2):219–227

    Article  PubMed  Google Scholar 

  35. Kingma BF, Grimminger PP, van der Sluis PC, van Det MJ, Kouwenhoven EA, Chao Y‑K et al (2022) Worldwide techniques and outcomes in robot-assisted minimally invasive esophagectomy (RAMIE): results from the multicenter international registry. Ann Surg 276(5):e386–92

    Article  PubMed  Google Scholar 

  36. Suda K, Sakai M, Obama K, Yoda Y, Shibasaki S, Tanaka T et al (2022) Three-year outcomes of robotic gastrectomy versus laparoscopic gastrectomy for the treatment of clinical stage I/II gastric cancer: a multi-institutional retrospective comparative study. Surg Endosc. https://doi.org/10.1007/s00464-022-09802-w

    Article  PubMed  Google Scholar 

  37. van der Wielen N, Straatman J, Daams F, Rosati R, Parise P, Weitz J et al (2021) Open versus minimally invasive total gastrectomy after neoadjuvant chemotherapy: results of a European randomized trial. Gastric Cancer 24(1):258–271

    Article  PubMed  Google Scholar 

  38. Hardon SF, Rahimi AM, Postema RR, Willuth E, Mintz Y, Arezzo A et al (2022) Safe implementation of hand held steerable laparoscopic instruments: a survey among EAES surgeons. Updates Surg 74(5):1749–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Toledo-Pereyra LH (2008) Surgical revolutions. J Invest Surg 21(4):165–168. https://doi.org/10.1080/08941930802255573

    Article  PubMed  Google Scholar 

  40. Hashimoto DA, Rosman G, Rus D, Meireles OR (2018) Artificial intelligence in surgery: promises and perils. Ann Surg 268(1):70–76. https://doi.org/10.1097/SLA.0000000000002693

    Article  PubMed  Google Scholar 

  41. Koskinen J, Torkamani-Azar M, Hussein A, Huotarinen A, Bednarik R (2022) Automated tool detection with deep learning for monitoring kinematics and eye-hand coordination in microsurgery. Comput Biol Med 141:105121. https://doi.org/10.1016/j.compbiomed.2021.105121

    Article  PubMed  Google Scholar 

  42. Albani JM, Lee DI (2007) Virtual reality-assisted robotic surgery simulation. J Endourol 21(3):285–287. https://doi.org/10.1089/end.2007.9978

    Article  PubMed  Google Scholar 

  43. Morrell ALG, Morrell-Junior AC, Morrell AG, Mendes JMF, Tustumi F, DE-Oliveira-E-Silva LG et al (2021) The history of robotic surgery and its evolution: when illusion becomes reality. Rev Col Bras Cir 48:e20202798. https://doi.org/10.1590/0100-6991e-20202798

    Article  PubMed  Google Scholar 

  44. Shademan A, Decker RS, Opfermann JD, Leonard S, Krieger A, Kim PCW (2016) Supervised autonomous robotic soft tissue surgery. Sci Transl Med 8(337):337ra64. https://doi.org/10.1126/scitranslmed.aad9398

    Article  PubMed  Google Scholar 

  45. Bhandari M, Zeffiro T, Reddiboina M (2020) Artificial intelligence and robotic surgery: current perspective and future directions. Curr Opin Urol 30(1):48–54. https://doi.org/10.1097/MOU.0000000000000692

    Article  PubMed  Google Scholar 

  46. Tranter-Entwistle I, Wang H, Daly K, Maxwell S, Connor S (2021) The challenges of implementing artificial intelligence into surgical practice. World J Surg 45(2):420–428. https://doi.org/10.1007/s00268-020-05820-8

    Article  PubMed  Google Scholar 

  47. Anagnoste S, Biclesanu I, Teodoroiu C, Bellini F (2022) Artificial intelligence in healthcare: public perception of robotic surgery. Proc Int Conf Bus Excell 16(1):251–259. https://doi.org/10.2478/picbe-2022-00

    Article  Google Scholar 

  48. Gumbs AA, Alexander F, Karcz K, Chouillard E, Croner R, Coles-Black J et al (2022) White paper: definitions of artificial intelligence and autonomous actions in clinical surgery. Art Int Surg 2(2):93–100. https://doi.org/10.20517/ais.2022.10

    Article  Google Scholar 

  49. O’Sullivan S, Blyth A, Leonard S, Pagallo U, Holzinger K, Holzinger A et al (2019) Legal, regulatory, and ethical frameworks for development of standards in artificial intelligence (AI) and autonomous robotic surgery. Int J Med Robot 15(1):e1968. https://doi.org/10.1002/rcs.1968

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Brunner.

Ethics declarations

Interessenkonflikt

S. Brunner, D.T. Müller, J.A. Eckhoff, A. Reisewitz, L.M. Schiffmann, W. Schröder, T. Schmidt, C.J. Bruns und H.F. Fuchs geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Dieser Beitrag wurde in der Zeitschrift Die Onkologie 6 (2023) 29:506–514, https://doi.org/10.1007/s00761-023-01323-y erstveröffentlicht. Zweitveröffentlichung mit freundlicher Genehmigung der Autoren.

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunner, S., Müller, D.T., Eckhoff, J.A. et al. Innovative Operationsroboter und Operationstechnik für den Einsatz am oberen Gastrointestinaltrakt. Wien klin Mag 26, 184–191 (2023). https://doi.org/10.1007/s00740-023-00508-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00740-023-00508-w

Schlüsselwörter

Keywords

Navigation