Skip to main content
Log in

Robotic colorectal surgery and ergonomics

  • Review Article
  • Published:
Journal of Robotic Surgery Aims and scope Submit manuscript

Abstract

Improved ergonomics for the operating surgeon may be an advantage of robotic colorectal surgery. Perceived robotic ergonomic advantages in visualisation include better exposure, three-dimensional vision, surgeon camera control, and line of sight screen location. Postural advantages include seated position and freedom from the constraints of the sterile operating field. Manipulation benefits include articulated instruments with seven degrees of freedom movement, elimination of fulcrum effect, tremor filtration, and scaling of movement. Potential ergonomic detriments of robotic surgery include lack of haptic feedback, visual, and mental strain from increased operating time and interruptions to workflow from crowding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong JG, Byrn JC (2017) Ergonomics in robotic colorectal surgery. In: Obias V (ed) Robotic colon and rectal surgery. Springer, Switzerland, pp 169–182. https://doi.org/10.1007/978-3-319-43256-4

    Chapter  Google Scholar 

  2. Epstein S, Sparer EH, Tran BN et al (2018) Prevalence of work-related musculoskeletal disorders among surgeons and interventionalists: a systematic review and meta-analysis. JAMA Surg 153(2):e174947. https://doi.org/10.1001/jamasurg.2017.4947

    Article  PubMed  Google Scholar 

  3. Stylopoulos N, Rattner D (2003) Robotics and ergonomics. Surg Clin N Am 83(6):1321–1337

    PubMed  Google Scholar 

  4. Falk V, Mintz D, Grünenfelder J et al (2001) Influence of three-dimensional vision on surgical telemanipulator performance. Surg Endosc 15(11):1282–1288

    CAS  PubMed  Google Scholar 

  5. Hanna GB, Shimi SM, Cuschieri A (1998) Randomised study of influence of two-dimensional versus three-dimensional imaging on performance of laparoscopic cholecystectomy. Lancet 351(9098):248–251

    CAS  PubMed  Google Scholar 

  6. Wang T, Zheng B (2019) 3D presentation in surgery: a review of technology and adverse effects. J Robot Surg 13(3):363–370

    PubMed  Google Scholar 

  7. Kavoussi LR, Moore RG, Adams JB, Partin AW (1995) Comparison of robotic versus human laparoscopic camera control. J Urol 154(6):2134–2136

    CAS  PubMed  Google Scholar 

  8. Zhou J, Xu HJ, Liang CZ et al (2015) A comparative study of distinct ocular symptoms after performing laparoscopic surgical tasks using a three-dimensional surgical imaging system and a conventional two-dimensional surgical imaging system. J Endourol 29(7):816–820

    PubMed  Google Scholar 

  9. Lee GI, Lee MR, Green I et al (2017) Surgeons’ physical discomfort and symptoms during robotic surgery: a comprehensive ergonomic survey study. Surg Endosc 31(4):1697–1706

    CAS  PubMed  Google Scholar 

  10. Hanna GB, Shimi SM, Cuschieri A (1998) Task performance in endoscopic surgery is influenced by location of the image display. Ann Surg 227(4):481–484

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Abiri A, Tao A, LaRocca M et al (2017) Visual-perceptual mismatch in robotic surgery. Surg Endosc 31(8):3271–3278

    PubMed  Google Scholar 

  12. Szeto GP, Poon JT, Law WL (2013) A comparison of surgeon’s postural muscle activity during robotic-assisted and laparoscopic rectal surgery. J Robot Surg 7(3):305–308

    PubMed  Google Scholar 

  13. Dalager T, Jensen PT, Eriksen JR et al (2020) Surgeons’ posture and muscle strain during laparoscopic and robotic surgery. Br J Surg 107(6):756–766

    CAS  PubMed  Google Scholar 

  14. Dalsgaard T, Jensen MD, Hartwell D et al (2020) Robotic surgery is less physically demanding than laparoscopic surgery: paired cross sectional study. Ann Surg 271(1):106–113

    PubMed  Google Scholar 

  15. Tarr ME, Brancato SJ, Cunkelman JA et al (2015) Comparison of postural ergonomics between laparoscopic and robotic sacrocolpopexy: a pilot study. J Minim Invasive Gynecol 22(2):234–238

    PubMed  Google Scholar 

  16. Armijo PR, Huang CK, High R (2019) Ergonomics of minimally invasive surgery: an analysis of muscle effort and fatigue in the operating room between laparoscopic and robotic surgery. Surg Endosc 33(7):2323–2331

    PubMed  Google Scholar 

  17. Hislop J, Tirosh O, McCormick J et al (2020) Muscle activation during traditional laparoscopic surgery compared with robot-assisted laparoscopic surgery: a meta-analysis. Surg Endosc 34(1):31–38

    PubMed  Google Scholar 

  18. Choussein S, Srouji SS, Farland LV et al (2018) Robotic assistance confers ambidexterity to laparoscopic surgeons. J Minim Invasive Gynecol 25(1):76–83

    PubMed  Google Scholar 

  19. Sutton E, Irvin M, Zeigler C et al (2014) The ergonomics of women in surgery. Surg Endosc 28(4):1051–1055

    PubMed  Google Scholar 

  20. Hanvold TN, Wærsted M, Veiersted KB (2012) Long periods with uninterrupted muscle activity related to neck and shoulder pain. Work 41(Suppl 1):2535–2538

    PubMed  Google Scholar 

  21. Park AE, Zahiri HR, Hallbeck MS et al (2017) Intraoperative “micro breaks” with targeted stretching enhance surgeon physical function and mental focus: a multicenter cohort study. Ann Surg 265(2):340–346

    PubMed  Google Scholar 

  22. Supe AN, Kulkarni GV, Supe PA (2010) Ergonomics in laparoscopic surgery. J Minim Access Surg 6(2):31–36

    PubMed  PubMed Central  Google Scholar 

  23. Falk V, McLoughlin J, Guthart G et al (1999) Dexterity enhancement in endoscopic surgery by a computer-controlled mechanical wrist. Minim Invasive Ther Allied Technol 8(4):235–242. https://doi.org/10.3109/13645709909153167

    Article  Google Scholar 

  24. Schneeberger EW, Michler RE (2001) An overview of the intuitive system: the surgeon’s perspective. Oper Tech Thorac Cardiovasc Surg 6(3):170–176. https://doi.org/10.1053/otct.2001.26962

    Article  Google Scholar 

  25. Kim VB, Chapman WH, Albrecht RJ et al (2002) Early experience with telemanipulative robot-assisted laparoscopic cholecystectomy using da Vinci. Surg Laparosc Endosc Percutan Tech 12(1):33–40

    PubMed  Google Scholar 

  26. Prasad SM, Prasad SM, Maniar HS et al (2004) Surgical robotics: impact of motion scaling on task performance. J Am Coll Surg 199(6):863–868

    PubMed  Google Scholar 

  27. Orosco RK, Lurie B, Matsuzaki T et al (2020) Compensatory motion scaling for time-delayed robotic surgery. Surg Endosc. https://doi.org/10.1007/s00464-020-07681-7

    Article  PubMed  Google Scholar 

  28. Ibrahim AE, Sarhane KA, Selber JC (2017) New frontiers in robotic-assisted microsurgical reconstruction. Clin Plast Surg 44(2):415–423

    PubMed  Google Scholar 

  29. Veronesi G, Galetta D, Maisonneuve P et al (2010) Four-arm robotic lobectomy for the treatment of early-stage lung cancer. J Thorac Cardiovasc Surg 140(1):19–25

    PubMed  Google Scholar 

  30. Okamura AM (2009) Haptic feedback in robot-assisted minimally invasive surgery. Curr Opin Urol 19(1):102–107

    PubMed  PubMed Central  Google Scholar 

  31. Amirabdollahian F, Livatino S, Vahedi B et al (2018) Prevalence of haptic feedback in robot-mediated surgery: a systematic review of literature. J Robot Surg 12(1):11–25

    PubMed  Google Scholar 

  32. Heney P (2019) Challenges of building haptic feedback for surgical robots. The Robot Report [Internet]. 2019 Jul 18. Available from: https://www.therobotreport.com/haptic-feedback-design-challenges-surgical-robots. Accessed date 18 Oct 2020

  33. van der Meijden OA, Schijven MP (2009) The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review. Surg Endosc 23(6):1180–1190

    PubMed  PubMed Central  Google Scholar 

  34. Meccariello G, Faedi F, AlGhamdi S et al (2016) An experimental study about haptic feedback in robotic surgery: may visual feedback substitute tactile feedback? J Robot Surg 10(1):57–61

    PubMed  Google Scholar 

  35. Abiri A, Pensa J, Tao A et al (2019) Multi-modal haptic feedback for grip force reduction in robotic surgery. Sci Rep 9(1):5016. https://doi.org/10.1038/s41598-019-40821-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wottawa CR, Genovese B, Nowroozi BN et al (2016) Evaluating tactile feedback in robotic surgery for potential clinical application using an animal model. Surg Endosc 30(8):3198–3209

    PubMed  Google Scholar 

  37. Bethea BT, Okamura AM, Kitagawa M et al (2004) Application of haptic feedback to robotic surgery. J Laparoendosc Adv Surg Tech A 14(3):191–195

    PubMed  Google Scholar 

  38. Darwich I, Stephan D, Klöckner-Lang M et al (2020) A roadmap for robotic-assisted sigmoid resection in diverticular disease using a SenhanceTM surgical robotic system: results and technical aspects. J Robot Surg 14(2):297–304

    PubMed  Google Scholar 

  39. Trinh BB, Jackson NR, Hauch AT et al (2014) Robotic versus laparoscopic colorectal surgery. JSLS 18(4):e2014.00187. https://doi.org/10.4293/JSLS.2014.00187

    Article  PubMed  PubMed Central  Google Scholar 

  40. Patel CB, Ragupathi M, Ramos-Valadez DI, Haas EM (2011) A three-arm (laparoscopic, hand-assisted, and robotic) matched-case analysis of intraoperative and postoperative outcomes in minimally invasive colorectal surgery. Dis Colon Rectum 54(2):144–150

    PubMed  Google Scholar 

  41. Bhama AR, Obias V, Welch KB, Vandewarker JF, Cleary RK (2016) A comparison of laparoscopic and robotic colorectal surgery outcomes using the American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP) database. Surg Endosc 30(4):1576–1584

    PubMed  Google Scholar 

  42. Schlachta CM, Mamazza J, Seshadri PA et al (2001) Defining a learning curve for laparoscopic colorectal resections. Dis Colon Rectum 44(2):217–222

    CAS  PubMed  Google Scholar 

  43. Byrn JC, Hrabe JE, Charlton ME (2014) An initial experience with 85 consecutive robotic-assisted rectal dissections: improved operating times and lower costs with experience. Surg Endosc 28(11):3101–3107

    PubMed  PubMed Central  Google Scholar 

  44. Nasseri Y, Stettler I, Shen W, Zhu R, Alizadeh A, Lee A, Cohen J, Barnajian M (2020) Learning curve in robotic colorectal surgery. J Robot Surg. https://doi.org/10.1007/s11701-020-01131-1

    Article  PubMed  Google Scholar 

  45. Bokhari MB, Patel CB, Ramos-Valadez DI, Ragupathi M, Haas EM (2011) Learning curve for robotic-assisted laparoscopic colorectal surgery. Surg Endosc 25(3):855–860

    PubMed  Google Scholar 

  46. Sng KK, Hara M, Shin JW et al (2013) The multiphasic learning curve for robot-assisted rectal surgery. Surg Endosc 27:3297–3307

    PubMed  Google Scholar 

  47. Yuh BE, Ciccone J, Chandrasekhar R et al (2009) Impact of previous abdominal surgery on robot-assisted radical cystectomy. JSLS 13(3):398–405

    PubMed  PubMed Central  Google Scholar 

  48. Shaw DD, Wright M, Taylor L, Bertelson NL, Shashidharan M, Menon P, Menon V, Wood S, Ternent CA (2018) Robotic colorectal surgery learning curve and case complexity. J Laparoendosc Adv Surg Tech A 28(10):1163–1168

    PubMed  Google Scholar 

  49. Slack PS, Coulson CJ, Ma X, Webster K, Proops DW (2008) The effect of operating time on surgeons’ muscular fatigue. Ann R Coll Surg Engl 90(8):651–657

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee JW, Cho HG, Moon BY et al (2019) Effects of prolonged continuous computer gaming on physical and ocular symptoms and binocular vision functions in young healthy individuals. PeerJ 4(7):e7050. https://doi.org/10.7717/peerj.7050

    Article  Google Scholar 

  51. Reyes DA, Tang B, Cuschieri A (2006) Minimal access surgery (MAS)-related surgeon morbidity syndromes. Surg Endosc 20(1):1–13

    CAS  PubMed  Google Scholar 

  52. Cumpanas AA, Bardan R, Ferician O et al (2020) The impact of tiredness on virtual reality robotic surgical skills. Wideochir Inne Tech Maloinwazyjne 15(2):298–304

    PubMed  PubMed Central  Google Scholar 

  53. Pilcher JJ, Huffcutt AI (1996) Effects of sleep deprivation on performance: a meta-analysis. Sleep 19(4):318–326

    CAS  PubMed  Google Scholar 

  54. Kahol K, Leyba MJ, Deka M et al (2008) Effect of fatigue on psychomotor and cognitive skills. Am J Surg 195(2):195–204

    PubMed  Google Scholar 

  55. Alarcon A, Berguer R (1996) A comparison of operating room crowding between open and laparoscopic operations. Surg Endosc 10(9):916–919

    CAS  PubMed  Google Scholar 

  56. Lanfranco AR, Castellanos AE, Desai JP, Meyers WC (2004) Robotic surgery: a current perspective. Ann Surg 239(1):14–21

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shing Wai Wong.

Ethics declarations

Conflict of interest

Author SWW, Author ZHA, Author PFY, and Author PC declare that they have no conflict of interest.

Statement of human and animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, S.W., Ang, Z.H., Yang, P.F. et al. Robotic colorectal surgery and ergonomics. J Robotic Surg 16, 241–246 (2022). https://doi.org/10.1007/s11701-021-01240-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11701-021-01240-5

Keywords

Navigation