Advertisement

Wiener klinisches Magazin

, Volume 17, Issue 6, pp 24–29 | Cite as

„Tarragona-Strategie“

Adäquate Antibiotikatherapie auf der Intensivstation
  • Lothar Engelmann
  • Dierk V. Schmitt
Infektiologie
  • 111 Downloads

Zusammenfassung

Hintergrund

Eine adäquate antibiotische Initialtherapie senkt die Sterblichkeit von Patienten mit Infektionen auf der Intensivstation beträchtlich. Die Festlegung einer solchen Therapie folgt empirischen Gesichtspunkten, die als „Tarragona-Strategie“ für die Initialtherapie der nosokomialen Pneumonie bekannt wurde.

Ergebnisse

Die Grundelemente des Strategieprinzips sind auf die antibiotische Initialbehandlung von Patienten mit Infektionen auf der Intensivstation allgemein übertragbar und beinhalten
  • die Sicht auf den Patienten und dessen Anamnese;

  • die Berücksichtigung der mikrobiologischen Umgebung, in der der Patient erkrankte;

  • die Forderung nach einer sorgfältigen Erregerkalkulation und dem sofortigen Therapiebeginn mit einer hohen antibiotischen Initialdosis;

  • die pharmakokinetischen/pharmakodynamischen Aspekte, die von den pathophysiologischen Vorgängen im kritisch Kranken, der Erregerspezifik, den Eigenschaften des Antibiotikums im Organismus und von therapeutischen Maßnahmen beeinflusst werden sowie

  • das Prinzip, eine breit kalkulierte Therapie in Kenntnis der unabdingbar initial erhobenen mikrobiologischen Befundung auf das notwendige und mögliche Maß zu begrenzen.

Schlussfolgerung

Ein solches Vorgehen ist sicher, senkt die Sterblichkeit, behindert die Resistenzentwicklung und ist wirtschaftlich.

Schlüsselwörter

Antibioitika Intensivmedizin Lebensumstände Initiale empirische Therapie Tarragona-Strategie 

Tarragona strategy

Appropriate antibiotic therapy in the ICU

Abstract

Background

Appropriate antibiotic initial therapy remarkably decreases the mortality of patients with infections in the ICU. The establishment of an appropriate initial therapy follows empirical aspects. This practice was first done for the treatment of nosocomial pneumonia. Since that time the practice became known as Tarragona strategy.

Results

The basic elements of the strategy are based on the initial antibiotic treatment of patients with infections in the ICU in general and include the following:
  • view the patient and his/her medical history,

  • consider the microbiologic environment, in which the patient became ill,

  • test for possible causative microorganisms and initiate high-dose antibiotics immediately,

  • evaluate pharmacokinetic/pharmacodynamic aspects influenced by the pathophysiologic processes in the critically ill patient, the specifics of the microorganisms, the peculiarity of the antibiotics in the patient and due to therapeutic procedures, and

  • tailor the initial broad spectrum therapy as necessary according to the microbiological results.

Conclusion

This procedure is safe, reduces mortality, limits the development of resistance, and is economic.

Keywords

Antibiotics Intensive care Environment Initial empirical therapy Tarragona strategy 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt. L. Engelmann gibt an, Teilnehmer eines infektiologischen Expertenworkshops der Fa. Novartis zu sein. D. V. Schmitt gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Sandiumenge A, Diaz E, Bodi M, Rello J (2003) Therapy of ventilator-associated pneumonia. Intensive Care Med 29:876–883PubMedGoogle Scholar
  2. 2.
    Luna CM, Vujacich P, Niederman MS et al (1997) Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest 111:676–685PubMedCrossRefGoogle Scholar
  3. 3.
    Kollef MH, Sherman G, Ward SN, Fraser VJ (1999) Inadequate antimicrobial treatment of infections. Chest 115:462–474PubMedCrossRefGoogle Scholar
  4. 4.
    Valles J, Rello J, Ochagavia A et al (2003) Community-aquired bloodstream infection in critically ill adult patients. Chest 123:1615–1624PubMedCrossRefGoogle Scholar
  5. 5.
    Rodriguez A, Mendia A, Sirvent JM et al (2007) Combination antibiotic therapy improves survival in patients with community-acquired pneumonia and shock. Crit Care Med 35:1493–1498PubMedCrossRefGoogle Scholar
  6. 6.
    Tessmer, A, Welte T, Martus P et al (2009) Impact of intravenous {beta}-lactam/macrolide versus {beta}-lactam monotherapy on mortality in hospitalized patients with community-acquired pneumonia. J Antimicrob Chemother 63:1025–1033PubMedCrossRefGoogle Scholar
  7. 7.
    Dalhoff K, Abele-Horn M, Bauer AT et al (2013) S3-Leitlinie Epidemiologie, Diagnostik und Therapie erwachsener Patienten mit nosokomialer Pneumonie. AWMF-Registernummer 020/013Google Scholar
  8. 8.
    Rober-Koch-Institut (2011) Definitionen nosokomialer Infektionen (CDC-Definitionen), 7. Aufl. Rober-Koch-Institut, Berlin, S 8–10Google Scholar
  9. 9.
    Johnson MT, Reichley R, Hoppe-Bauer J et al (2011) Impact of previous antibiotic therapy on outcome of gram-negative severe sepsis. Crit Care Med 39:1859–1965PubMedCrossRefGoogle Scholar
  10. 10.
    Labelle A, Juang P, Reichley R et al (2012) The determinants of hospital mortality among patients with septic shock receiving appropriate initial antibiotic treatment. Crit Care Med 40:2016–2021PubMedCrossRefGoogle Scholar
  11. 11.
    ECDC-Surveillance-Report (2012) Antimicrobial resistance surveillance in Europe. http:// http://www.ecdc.europa.eu/en/publications/publications/antimicrobial-resistance-surveillance-europe-2012.pdf. Zugegriffen: 7. März 2014Google Scholar
  12. 12.
    Loddenkemper R, Hauer B (2010) Resistente Tuberkulose: Große Herausforderung durch eine Weltepidemie. Dtsch Arztebl Int 107(1–2):10–19. doi:0.3238/arztebl.2010.0010Google Scholar
  13. 13.
    Meehan TP, Fine MJ, Krumholtz HM et al (1997) Quality of care, process, and outcome in elderly patients with pneumonia. JAMA 278:2080–2084PubMedCrossRefGoogle Scholar
  14. 14.
    Kumar A, Roberts D, Wood KE et al (2006) Duration of hypotension before initiation of effective entmicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34:1589–1596PubMedCrossRefGoogle Scholar
  15. 15.
    Morell M, Fraser VJ, Kollef MH (2005) Delaying the empiric treatment of candida bloodstream infection until blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob Agents Chemother 49:3640–3645CrossRefGoogle Scholar
  16. 16.
    Garey KW, Rege M, Pai MP et al (2006) Time to initiation of fluconazole therapy impacts moprtality in patients with candidemia: a multi-institutional study. Clin Infect Dis 43:25–31PubMedCrossRefGoogle Scholar
  17. 17.
    Gaieski DF, Mikkelsen ME, Band RA et al (2010) Impact of time to antibiotics on survival in patients with severe sepsis or septic shock in whom early goal-directed therapy was initiated in the emergency department. Crit Care Med 38:1045–1053PubMedCrossRefGoogle Scholar
  18. 18.
    Udy AA, Roberts JA, Lipman J (2014) Clinical implications of antibiotic pharmacokinetic principles in the critically ill. Intensive Care Med 39:2070–2082CrossRefGoogle Scholar
  19. 19.
    Dalfino L, Puntillo F, Mosca A et al (2012) High dose, extended-interval colistin administration in critically ill patients: is this the right dosing strategy? A preliminary study. Clin Infect Dis 54:1720–1726PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Safdar N, Handelsman J, Maki DG (2004) Does combination antimicrobial therapy reduce mortality in gram-negative bacteraemia? A meta-analysis. Lancet Infect Dis 4:519–527PubMedCrossRefGoogle Scholar
  21. 21.
    Heyland DK, Dodek P, Muscedere J et al (2008) Randomized trial of combination versus monotherapy for the empiric treatment of suspected ventilator-associated pneumonia. Crit Care Med 36:737–744PubMedCrossRefGoogle Scholar
  22. 22.
    Kumar A, Safdar N, Kethireddy S, Chateau D (2010) A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent on the risk od death: a meta-analytic/meta-regression study. Crit Care Med 38:1–14CrossRefGoogle Scholar
  23. 23.
    Kumar A, Zarychanski R, Light B et al (2010) Early combination antibiotic therapy yields improved survival compared with monotherapy in septic shock: a propensity- matched analysis. Crit Care Med 38:1773–1785PubMedCrossRefGoogle Scholar
  24. 24.
    Brunkhorst FM, Oppert M, Marx G et al (2012) Effect of empirical treatment with moxifloxacin and meropenem vs meropenem on sepsis-related organ dysfunction in patients with severe sepsis. A randomized trial. JAMA 307:2390–2399PubMedCrossRefGoogle Scholar
  25. 25.
    Bodmann KF, Grabein B und Expertenkommission der Paul-Ehrlich-Gesellschaft für Chemotherapie e. V. Empfehlungen zur kalkulierten parenteralen Initialtherapie bakterieller Erkrankungen bei Erwachsenen – Update 2010. http://www.p-e-g.org. Zugegriffen: 7. März 2014Google Scholar
  26. 26.
    Mehrotra R, De Gaudino R, Palazzo M (2004) Antibiotic pharmocokinetic and pharmacodynamic considerations in critical illness. Intensive Care Med 30:2145–2156PubMedCrossRefGoogle Scholar
  27. 27.
    Choi G, Gomersall CD, Tian Q et al (2010) Principles of antibacterial dosing in continuous renal replacement therapy. Blood Purif 30:195–212PubMedCrossRefGoogle Scholar
  28. 28.
    Udy AA, Roberts JA, Shorr AF et al (2013) Augmented renal clearance in septic and traumatized patients with normal plasma creatinine concentrations: identifying at-risk patients. Crit Care 17:R35PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Gurevich KG (2013) Effect of blood protein concentrations on drug-dosing regimes: practical guidance. Theor Biol Med Model 10:20. doi:10.1186/1742-4682-10-20PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    AWMF-Leitlinie: Bakterielle (eitrige) Meningoenzephalitis. Register Nr. 030/089Google Scholar
  31. 31.
    Tumbarello M, Viale P, Viscoli C et al (2012) Predictors of mortality in bloodstream infections caused by Klebsielle pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin Infect Dis 55:943–950PubMedCrossRefGoogle Scholar
  32. 32.
    Rello J, Vidaur L, Sandiumenge A et al (2004) De-escalation therapy in ventilator-associated pneumonia. Crit Care Med 32:2183–2190PubMedGoogle Scholar
  33. 33.
    Garnacho-Montero J, Gutierrez-Pizarraya A, Escoresca-Ortega A et al (2014) De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock. Intensive Care Med 40:32–40PubMedCrossRefGoogle Scholar
  34. 34.
    Singh N, Rogers P, Atwood CW et al (2000) Short-course empiric antibiotic therapy for patients with pulmonary infiltrates in the intensive care unit. Am J Respir Crit Care Med 162:505–511PubMedCrossRefGoogle Scholar
  35. 35.
    Niederman MS (2003) Appropriate use of antimicrobial agents: challenges and strategies for improvement. Crit Care Med 31:608–616PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.LeipzigDeutschland
  2. 2.Abteilung für Krankenhaushygiene und InfektionspräventionHerzzentrum Leipzig, UniversitätsklinikLeipzigDeutschland

Personalised recommendations