Skip to main content

Advertisement

Log in

Investigating molecular interactions between human transferrin and resveratrol through a unified experimental and computational approach: Role of natural compounds in Alzheimer’s disease therapeutics

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Disruptions to iron metabolism and iron homeostasis have emerged as significant contributors to the development and progression of Alzheimer's disease (AD). Human transferrin plays a key part in maintaining iron equilibrium throughout the body, highlighting its importance in AD. Many plant-derived compounds and dietary constituents show promise for preventing AD. Polyphenols that are abundant in fruits, vegetables, teas, coffee, and herbs possess neuroprotective attributes. Resveratrol is a natural polyphenol present in various plant sources like grapes, berries, peanuts, and red wine that has garnered research interest due to its wide range of biological activities. Notably, resveratrol exhibits neuroprotective effects that may help prevent or treat AD through multiple mechanisms. In the present study, we employed a combination of molecular docking and all-atom molecular dynamic simulations (MD) along with experimental approaches to unravel the intricate interactions between transferrin and resveratrol deciphering the binding mechanism. Through molecular docking analysis, it was determined that resveratrol occupies the iron binding pocket of transferrin. Furthermore, MD simulations provided a more profound insight into the stability and conformational dynamics of the complex suggesting that the binding of resveratrol introduced localized flexibility, while maintaining overall stability. The spectroscopic observations yielded clear evidence of substantial binding between resveratrol and transferrin, confirming the computational findings. The identified binding mechanism and conformational stability hold potential for advancing the development of innovative therapeutic approaches targeting AD through resveratrol, particularly concerning iron homeostasis. These insights serve as a platform for considering the natural compounds in the realm of AD therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All associated data are presented in the manuscript.

References

  • Anson RM, Guo Z, de Cabo R, Iyun T, Rios M, Hagepanos A, Ingram DK, Lane MA, Mattson MP (2003) Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc Natl Acad Sci 100(10):6216–6220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anwar S, Mohammad T, Shamsi A, Queen A, Parveen S, Luqman S, Hasan GM, Alamry KA, Azum N, Asiri AM (2020) Discovery of Hordenine as a potential inhibitor of pyruvate dehydrogenase kinase 3: implication in lung Cancer therapy. Biomedicines 8(5):119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anwar S, DasGupta D, Azum N, Alfaifi SY, Asiri AM, Alhumaydhi FA, Alsagaby SA, Sharaf SE, Shahwan M, Hassan MI (2022a) Inhibition of PDK3 by artemisinin, a repurposed antimalarial drug in cancer therapy. J Mol Liq 355:118928

    Article  CAS  Google Scholar 

  • Anwar S, DasGupta D, Shafie A, Alhumaydhi FA, Alsagaby SA, Shahwan M, Anjum F, Al Abdulmonem W, Sharaf SE, Hassan MI (2022b) Implications of tempol in pyruvate dehydrogenase kinase 3 targeted anticancer therapeutics: computational, spectroscopic, and calorimetric studies. J Mol Liq 350:118581

    Article  CAS  Google Scholar 

  • Biovia DS (2017) Discovery studio visualizer. San Diego, CA, USA 936

  • Brück CC, Wolters FJ, Ikram MA, de Kok IM (2022) Projected prevalence and incidence of dementia accounting for secular trends and birth cohort effects: a population-based microsimulation study. Eur J Epidemiol 37(8):807–814

    Article  PubMed  PubMed Central  Google Scholar 

  • Byrne S (2009) Investigation of the molecular basis of receptor mediated iron release from transferrin.

  • Caballol N, Martí MJ, Tolosa E (2007) Cognitive dysfunction and dementia in Parkinson disease. Mov Disord 22(S17):S358–S366

    Article  PubMed  Google Scholar 

  • Calhoun A, King C, Khoury R, Grossberg GT (2018) An evaluation of memantine ER+ donepezil for the treatment of Alzheimer’s disease. Expert Opin Pharmacother 19(15):1711–1717

    Article  CAS  PubMed  Google Scholar 

  • Calmettes C, Alcantara J, Yu R-H, Schryvers AB, Moraes TF (2012) The structural basis of transferrin sequestration by transferrin-binding protein B. Nat Struct Mol Biol 19(3):358–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G-f, Xu T-h, Yan Y, Zhou Y-r, Jiang Y, Melcher K, Xu HE (2017) Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 38(9):1205–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeGregorio-Rocasolano N, Martí-Sistac O, Gasull T (2019) Deciphering the iron side of stroke: neurodegeneration at the crossroads between iron dyshomeostasis, excitotoxicity, and ferroptosis. Front Neurosci 13:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Dumurgier J, Sabia S (2021) Life expectancy in dementia subtypes: exploring a leading cause of mortality. The Lancet Healthy Longevity 2(8):e449–e450

    Article  PubMed  Google Scholar 

  • Durham E, Dorr B, Woetzel N, Staritzbichler R, Meiler J (2009) Solvent accessible surface area approximations for rapid and accurate protein structure prediction. J Mol Model 15(9):1093–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng X, Liang N, Zhu D, Gao Q, Peng L, Dong H, Yue Q, Liu H, Bao L, Zhang J (2013) Resveratrol inhibits β-amyloid-induced neuronal apoptosis through regulation of SIRT1-ROCK1 signaling pathway. PLoS ONE 8(3):e59888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleitze S, Paula-Lima A, Núñez MT, Hidalgo C (2021) The calcium–iron connection in ferroptosis-mediated neuronal death. Free Radical Biol Med 175:28–41

    Article  CAS  Google Scholar 

  • Gong N-J, Dibb R, Bulk M, van der Weerd L, Liu C (2019) Imaging beta amyloid aggregation and iron accumulation in Alzheimer’s disease using quantitative susceptibility mapping MRI. Neuroimage 191:176–185

    Article  CAS  PubMed  Google Scholar 

  • Gosriwatana I, Loreal O, Lu S, Brissot P, Porter J, Hider RC (1999) Quantification of non-transferrin-bound iron in the presence of unsaturated transferrin. Anal Biochem 273(2):212–220

    Article  CAS  PubMed  Google Scholar 

  • Grinan-Ferre C, Bellver-Sanchis A, Izquierdo V, Corpas R, Roig-Soriano J, Chillón M, Andres-Lacueva C, Somogyvári M, Sőti C, Sanfeliu C (2021) The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer’s disease pathology: from antioxidant to epigenetic therapy. Ageing Res Rev 67:101271

    Article  CAS  PubMed  Google Scholar 

  • Halbrooks PJ, He Q-Y, Briggs SK, Everse SJ, Smith VC, MacGillivray RT, Mason AB (2003) Investigation of the mechanism of iron release from the C-lobe of human serum transferrin: mutational analysis of the role of a pH sensitive triad. Biochemistry 42(13):3701–3707

    Article  CAS  PubMed  Google Scholar 

  • Haug E, Arora J, Matsui K (1976) A steepest-descent method for optimization of mechanical systems. J Optim Theory Appl 19:401–424

    Article  Google Scholar 

  • Holmes C (2002) Genotype and phenotype in Alzheimer’s disease. Br J Psychiatry 180(2):131–134

    Article  PubMed  Google Scholar 

  • Huang H-C, Jiang Z-F (2009) Accumulated amyloid-β peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s disease. J Alzheimers Dis 16(1):15–27

    Article  CAS  PubMed  Google Scholar 

  • Huey R, Morris GM, Forli S (2012) Using AutoDock 4 and AutoDock vina with AutoDockTools: a tutorial. Scripps Res Instit Mol Graph Lab 10550:92037

    Google Scholar 

  • Islam F, Nafady MH, Islam MR, Saha S, Rashid S, Akter A, Or-Rashid MH, Akhtar MF, Perveen A, Md. Ashraf G, (2022) Resveratrol and neuroprotection: an insight into prospective therapeutic approaches against Alzheimer’s disease from bench to bedside. Mol Neurobiol 59(7):4384–4404

    Article  CAS  PubMed  Google Scholar 

  • Jiang T, Yu J-T, Tian Y, Tan L (2013) Epidemiology and etiology of Alzheimer’s disease: from genetic to non-genetic factors. Curr Alzheimer Res 10(8):852–867

    Article  CAS  PubMed  Google Scholar 

  • Khan T, Waseem R, Zehra Z, Aiman A, Bhardwaj P, Ansari J, Hassan MI, Islam A (2022) Mitochondrial dysfunction: pathophysiology and mitochondria-targeted drug delivery approaches. Pharmaceutics 14(12):2657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MS, Shahwan M, Anwar S, Yadav DK, Shamsi A (2023) Experimental and computational investigation of the binding mechanism of thymol with human transferrin: Importance of dietary phytochemicals in Alzheimer’s disease therapeutics. J Mol Liq 390:123076

    Article  Google Scholar 

  • Krstic D, Knuesel I (2013) Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol 9(1):25–34

    Article  CAS  PubMed  Google Scholar 

  • Lantero Rodriguez J, Karikari TK, Suárez-Calvet M, Troakes C, King A, Emersic A, Aarsland D, Hye A, Zetterberg H, Blennow K (2020) Plasma p-tau181 accurately predicts Alzheimer’s disease pathology at least 8 years prior to post-mortem and improves the clinical characterisation of cognitive decline. Acta Neuropathol 140:267–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leal SS, Botelho HM, Gomes CM (2012) Metal ions as modulators of protein conformation and misfolding in neurodegeneration. Coord Chem Rev 256(19–20):2253–2270

    Article  CAS  Google Scholar 

  • Leverence R, Mason AB, Kaltashov IA (2010) Noncanonical interactions between serum transferrin and transferrin receptor evaluated with electrospray ionization mass spectrometry. Proc Natl Acad Sci 107(18):8123–8128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levi S, Cozzi A, Santambrogio P (2019) Iron pathophysiology in neurodegeneration with brain iron accumulation. In: Chang Y-Z (ed) Brain Iron metabolism and CNS diseases. Springer Singapore, Singapore, pp 153–177

    Chapter  Google Scholar 

  • Li F, Gong Q, Dong H, Shi J (2012) Resveratrol, a neuroprotective supplement for Alzheimer’s disease. Curr Pharm Des 18(1):27–33

    Article  PubMed  Google Scholar 

  • Li F, Qin W, Zhu M, Jia J (2021) Model-based projection of dementia prevalence in China and worldwide: 2020–2050. J Alzheimers Dis 82(4):1823–1831

    Article  PubMed  Google Scholar 

  • Lin W-J, Xiao C, Salton SR (2022) Hope or hype? Aducanumab as a magic bullet for Alzheimer’s disease. BIO Integration 3(2):84–88

    Article  CAS  Google Scholar 

  • Lobanov MY, Bogatyreva N, Galzitskaya O (2008) Radius of gyration as an indicator of protein structure compactness. Mol Biol 42:623–628

    Article  CAS  Google Scholar 

  • Maisuradze GG, Liwo A, Scheraga HA (2009) Principal component analysis for protein folding dynamics. J Mol Biol 385(1):312–329

    Article  CAS  PubMed  Google Scholar 

  • Melzoch K, Hanzlíková I, Filip V, Buckiová D, Šmidrkal J (2001) Resveratrol in parts of vine and wine originating from Bohemian and Moravian vineyard regions. Agric Conspec Sci 66(1):53–57

    Google Scholar 

  • Mohammad T, Shamsi A, Anwar S, Umair M, Hussain A, Rehman MT, AlAjmi MF, Islam A, Hassan MI (2020) Identification of high-affinity inhibitors of SARS-CoV-2 main protease: towards the development of effective COVID-19 therapy. Virus Res 288:198102

    Article  CAS  PubMed  Google Scholar 

  • Mohammad T, Mathur Y, Hassan MI (2021) InstaDock: A single-click graphical user interface for molecular docking-based virtual high-throughput screening. Brief Bioinform 22(4):279

    Article  Google Scholar 

  • Naoi M, Maruyama W, Shamoto-Nagai M (2022) Disease-modifying treatment of Parkinson’s disease by phytochemicals: targeting multiple pathogenic factors. J Neural Transm. https://doi.org/10.1007/s00702-021-02427-8

    Article  PubMed  Google Scholar 

  • Naqvi AA, Mohammad T, Hasan GM, Hassan M (2018) Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Curr Top Med Chem 18(20):1755–1768

    Article  PubMed  Google Scholar 

  • Noinaj N, Easley NC, Oke M, Mizuno N, Gumbart J, Boura E, Steere AN, Zak O, Aisen P, Tajkhorshid E (2012) Structural basis for iron piracy by pathogenic Neisseria. Nature 483(7387):53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozcan T, Akpinar-Bayizit A, Yilmaz-Ersan L, Delikanli B (2014) Phenolics in human health. Int J Chem Eng Appl 5(5):393–396

    CAS  Google Scholar 

  • Paula VdJRd, Guimarães FM, Diniz BS, Forlenza OV (2009) Neurobiological pathways to Alzheimer’s disease: amyloid-beta, TAU protein or both? Dement Neuropsychol 3:188–194

    Article  PubMed  PubMed Central  Google Scholar 

  • Phan HT, Samarat K, Takamura Y, Azo-Oussou AF, Nakazono Y, Vestergaard MdC (2019) Polyphenols modulate alzheimer’s amyloid beta aggregation in a structure-dependent manner. Nutrients 11(4):756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shamsi A, Anwar S, Mohammad T, Alajmi MF, Hussain A, Rehman M, Hasan GM, Islam A, Hassan M (2020a) MARK4 inhibited by AChE inhibitors, donepezil and Rivastigmine tartrate: insights into Alzheimer’s disease therapy. Biomolecules 10(5):789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shamsi A, Mohammad T, Anwar S, Nasreen K, Hassan MI, Ahmad F, Islam A (2022) Insight into the binding of PEG-400 with eye protein alpha-crystallin: Multi spectroscopic and computational approach: Possible therapeutics targeting eye diseases. J Biomol Struct Dyn 40(10):4496–4506

    Article  CAS  PubMed  Google Scholar 

  • Shamsi A, Furkan M, Khan RH, Khan MS, Shahwan M, Yadav DK (2023) Comprehensive insight into the molecular interaction of rutin with human transferrin: Implication of natural compounds in neurodegenerative diseases. Int J Biol Macromol 253:126643

    Article  CAS  PubMed  Google Scholar 

  • Silva AM, Moniz T, de Castro B, Rangel M (2021) Human transferrin: an inorganic biochemistry perspective. Coord Chem Rev 449:214186

    Article  CAS  Google Scholar 

  • Song C, Shieh C-H, Wu Y-S, Kalueff A, Gaikwad S, Su K-P (2016) The role of omega-3 polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids in the treatment of major depression and Alzheimer’s disease: acting separately or synergistically? Prog Lipid Res 62:41–54

    Article  CAS  PubMed  Google Scholar 

  • Stankiewicz JM, Brass SD (2009) Role of iron in neurotoxicity: a cause for concern in the elderly? Curr Opin Clin Nutr Metab Care 12(1):22–29

    Article  CAS  PubMed  Google Scholar 

  • Szczechowiak K, Diniz BS, Leszek J (2019) Diet and Alzheimer’s dementia–nutritional approach to modulate inflammation. Pharmacol Biochem Behav 184:172743

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Novak T, Hecker J, Grubbs G, Zahra FT, Bellusci L, Pourhashemi S, Chou J, Moffitt K, Halasa NB (2022) Cross-reactive immunity against the SARS-CoV-2 Omicron variant is low in pediatric patients with prior COVID-19 or MIS-C. Nat Commun 13(1):1–10

    Google Scholar 

  • Torres-Pérez M, Tellez-Ballesteros RI, Ortiz-López L, Ichwan M, Vega-Rivera NM, Castro-García M, Gómez-Sánchez A, Kempermann G, Ramirez-Rodriguez GB (2015) Resveratrol enhances neuroplastic changes, including hippocampal neurogenesis, and memory in Balb/C mice at six months of age. PLoS ONE 10(12):e0145687

    Article  PubMed  PubMed Central  Google Scholar 

  • Trifunovic A, Larsson NG (2008) Mitochondrial dysfunction as a cause of ageing. J Intern Med 263(2):167–178

    Article  CAS  PubMed  Google Scholar 

  • Truong VL, Jun M, Jeong WS (2018) Role of resveratrol in regulation of cellular defense systems against oxidative stress. BioFactors 44(1):36–49

    Article  CAS  PubMed  Google Scholar 

  • Uddin MS, Kabir MT, Niaz K, Jeandet P, Clément C, Mathew B, Rauf A, Rengasamy KR, Sobarzo-Sánchez E, Ashraf GM (2020) Molecular insight into the therapeutic promise of flavonoids against Alzheimer’s disease. Molecules 25(6):1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valls-Pedret C, Lamuela-Raventós RM, Medina-Remon A, Quintana M, Corella D, Pinto X, Martínez-González MÁ, Estruch R, Ros E (2012) Polyphenol-rich foods in the Mediterranean diet are associated with better cognitive function in elderly subjects at high cardiovascular risk. J Alzheimers Dis 29(4):773–782

    Article  CAS  PubMed  Google Scholar 

  • Van Cauwenberghe C, Van Broeckhoven C, Sleegers K (2016) The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med 18(5):421–430

    Article  PubMed  Google Scholar 

  • Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718

    Article  PubMed  Google Scholar 

  • Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. The Lancet Neurology 13(10):1045–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss MS, Brandl M, Sühnel J, Pal D, Hilgenfeld R (2001) More hydrogen bonds for the (structural) biologist. Trends Biochem Sci 26(9):521–523

    Article  CAS  PubMed  Google Scholar 

  • Williams KN, Kemper S (2010) Interventions to reduce cognitive decline in aging. J Psychosoc Nurs Ment Health Serv 48(5):42–51

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Tepper HL, Voth GA (2006) Flexible simple point-charge water model with improved liquid-state properties. J Chem Phys 124(2):024503

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

M.S.K. acknowledges the generous support from the Research Supporting project (RSP2023R352) by the King Saud University, Riyadh, Kingdom of Saudi Arabia. A.S. is grateful to Ajman University for supporting this publication.

Funding

M.S.K. acknowledges the generous support from the Research Supporting project (RSP2023R352) by the King Saud University, Riyadh, Kingdom of Saudi Arabia. A.S. is grateful to Ajman University for supporting this publication.

Author information

Authors and Affiliations

Authors

Contributions

AS, MSK, and RHK designed the original studies; AS and MSK carried out in silico studies; MF and SA performed spectroscopic analysis, DKY and RHK analyzed the data, AS and MSK secured funding, AS, MSK, MS, and DKY drafted the paper; all authors revised the draft and approved the final version of the manuscript.

Corresponding author

Correspondence to Anas Shamsi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Handling editor: K. Aoyama.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.S., Furkan, M., Shahwan, M. et al. Investigating molecular interactions between human transferrin and resveratrol through a unified experimental and computational approach: Role of natural compounds in Alzheimer’s disease therapeutics. Amino Acids 55, 1923–1935 (2023). https://doi.org/10.1007/s00726-023-03355-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-023-03355-5

Keywords

Navigation