Skip to main content
Log in

Amino acid-stimulated insulin secretion: a path forward in type 2 diabetes

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Qualitative and quantitatively appropriate insulin secretion is essential for optimal control of blood glucose. Beta-cells of the pancreas produce and secrete insulin in response to glucose and non-glucose stimuli including amino acids. In this manuscript, we review the literature on amino acid-stimulated insulin secretion in oral and intravenous in vivo studies, in addition to the in vitro literature, and describe areas of consensus and gaps in understanding. We find promising evidence that the synergism of amino acid-stimulated insulin secretion could be exploited to develop novel therapeutics, but that a systematic approach to investigating these lines of evidence is lacking. We highlight evidence that supports the relative preservation of amino acid-stimulated insulin secretion compared to glucose-stimulated insulin secretion in type 2 diabetes, and make the case for the therapeutic potential of amino acids. Finally, we make recommendations for research and describe the potential clinical utility of nutrient-based treatments for type 2 diabetes including remission services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

N/A as we did not collect any primary data for this manuscript.

References

  • Anello M, Ucciardello V, Piro S, Patané G, Frittitta L, Calabrese V, Giuffrida Stella AM, Vigneri R, Purrello F, Rabuazzo AM (2001) Chronic exposure to high leucine impairs glucose-induced insulin release by lowering the ATP-to-ADP ratio. Am J Physiol Endocrinol Metab 281(5):E1082–E1087

    Article  CAS  PubMed  Google Scholar 

  • Berger S, Vongaraya N (1966) Insulin response to ingested protein in diabetes. Diabetes 15(5):303–306

    Article  CAS  PubMed  Google Scholar 

  • Blachier F, Boutry C, Bos C, Tomé D (2009) Metabolism and functions of L-glutamate in the epithelial cells of the small and large intestines. Am J Clin Nutr 90(3):814s–821s

    Article  CAS  PubMed  Google Scholar 

  • Bolea S, Pertusa JA, Martín F, Sanchez-Andrés JV, Soria B (1997) Regulation of pancreatic beta-cell electrical activity and insulin release by physiological amino acid concentrations. Pflugers Arch 433(6):699–704

    Article  CAS  PubMed  Google Scholar 

  • Bränström R, Efendić S, Berggren PO, Larsson O (1998) Direct inhibition of the pancreatic beta-cell ATP-regulated potassium channel by alpha-ketoisocaproate. J Biol Chem 273(23):14113–14118

    Article  PubMed  Google Scholar 

  • Brennan L, Shine A, Hewage C, Malthouse JPG, Brindle KM, McClenaghan N, Flatt PR, Newsholme P (2002) A nuclear magnetic resonance-based demonstration of substantial oxidative l-alanine metabolism and l-alanine-enhanced glucose metabolism in a clonal pancreatic β-cell line: metabolism of l-alanine is important to the regulation of insulin secretion. Diabetes 51(6):1714–1721

    Article  CAS  PubMed  Google Scholar 

  • Casperson SL, Sheffield-Moore M, Hewlings SJ, Paddon-Jones D (2012) Leucine supplementation chronically improves muscle protein synthesis in older adults consuming the RDA for protein. Clin Nutr 31(4):512–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cen J, Sargsyan E, Bergsten P (2016) Fatty acids stimulate insulin secretion from human pancreatic islets at fasting glucose concentrations via mitochondria-dependent and -independent mechanisms. Nutr Metab 13(1):59

    Article  Google Scholar 

  • Corless M, Kiely A, McClenaghan NH, Flatt PR, Newsholme P (2006) Glutamine regulates expression of key transcription factor, signal transduction, metabolic gene, and protein expression in a clonal pancreatic beta-cell line. J Endocrinol 190(3):719–727

    Article  CAS  PubMed  Google Scholar 

  • Dawson-Hughes B, Harris SS, Rasmussen HM, Dallal GE (2007) Comparative effects of oral aromatic and branched-chain amino acids on urine calcium excretion in humans. Osteoporos Int 18(7):955–961

    Article  CAS  PubMed  Google Scholar 

  • Del Prato S, Tiengo A (2001) The importance of first-phase insulin secretion: implications for the therapy of type 2 diabetes mellitus. Diabetes Metab Res Rev 17(3):164–174

    Article  PubMed  Google Scholar 

  • Del Prato S, Leonetti F, Simonson DC, Sheehan P, Matsuda M, DeFronzo RA (1994) Effect of sustained physiologic hyperinsulinaemia and hyperglycaemia on insulin secretion and insulin sensitivity in man. Diabetologia 37(10):1025–1035

    Article  CAS  PubMed  Google Scholar 

  • Dunne MJ, Yule DI, Gallacher DV, Petersen OH (1990) Effects of alanine on insulin-secreting cells: patch-clamp and single cell intracellular Ca2+ measurements. Biochim Biophys Acta 1055(2):157–164

    Article  CAS  PubMed  Google Scholar 

  • Efendić S, Lins PE, Cerasi E (1979) Potentiation and inhibition of insulin release in man following priming with glucose and with arginine–effect of somatostatin. Acta Endocrinol (Copenh) 90(2):259–271

    PubMed  Google Scholar 

  • Fasching P, Ratheiser K, Nowotny P, Uurzemann S, Parzer S, Waldhäusl W (1994) Insulin production following intravenous glucose, arginine, and valine: different pattern in patients with impaired glucose tolerance and non-insulin-dependent diabetes mellitus. Metabolism 43(3):385–389

    Article  CAS  PubMed  Google Scholar 

  • Fitch WL, King JC (1987) Plasma amino acid, glucose, and insulin responses to moderate-protein and high-protein test meals in pregnant, nonpregnant, and gestational diabetic women. Am J Clin Nutr 46(2):243–249

    Article  CAS  PubMed  Google Scholar 

  • Floyd JC Jr, Fajans SS, Conn JW, Knopf RF, Rull J (1966) Stimulation of insulin secretion by amino acids. J Clin Invest 45(9):1487–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floyd JC Jr, Fajans SS, Pek S, Thiffault CA, Knopf RF, Conn JW (1970) Synergistic effect of certain amino acid pairs upon insulin secretion in man. Diabetes 19(2):102–108

    Article  CAS  PubMed  Google Scholar 

  • Gannon MC, Nuttall FQ (2010) Amino acid ingestion and glucose metabolism–a review. IUBMB Life 62(9):660–668

    Article  CAS  PubMed  Google Scholar 

  • Gannon MC, Nuttall JA, Damberg G, Gupta V, Nuttall FQ (2001) Effect of protein ingestion on the glucose appearance rate in people with type 2 diabetes. J Clin Endocrinol Metab 86(3):1040–1047

    CAS  PubMed  Google Scholar 

  • Gannon MC, Hoover H, Nuttall FQ (2010) Further decrease in glycated hemoglobin following ingestion of a LoBAG30 diet for 10 weeks compared to 5 weeks in people with untreated type 2 diabetes. Nutr Metab (lond) 7:64

    Article  PubMed  Google Scholar 

  • Gerst F, Singer C, Noack K, Graf D, Kaiser G, Panse M, Kovarova M, Schleicher E, Häring HU, Drews G, Ullrich S (2019) Glucose responsiveness of β-cells depends on fatty acids. Exp Clin Endocrinol Diabetes 128(10):644–653

    PubMed  Google Scholar 

  • Gleason CE, Gonzalez M, Harmon JS, Robertson RP (2000) Determinants of glucose toxicity and its reversibility in the pancreatic islet beta-cell line, HIT-T15. Am J Physiol Endocrinol Metab 279(5):E997–E1002

    Article  CAS  PubMed  Google Scholar 

  • Güttler F, Kühl C, Pedersen L, Påby P (1978) Effects of oral phenylalanine load on plasma glucagon, insulin, amino acid and glucose concentrations in man. Scand J Clin Lab Invest 38(3):255–260

    Article  PubMed  Google Scholar 

  • Gylfe E (1976) Comparison of the effects of leucines, non-metabolizable leucine analogues and other insulin secretagogues on the activity of glutamate dehydrogenase. Acta Diabetol Lat 13(1–2):20–24

    Article  CAS  PubMed  Google Scholar 

  • Han G, Takahashi H, Murao N, Gheni G, Yokoi N, Hamamoto Y, Asahara SI, Seino Y, Kido Y, Seino S (2021) Glutamate is an essential mediator in glutamine-amplified insulin secretion. J Diabetes Investig 12(6):920–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helman A, Cangelosi AL, Davis JC, Pham Q, Rothman A, Faust AL, Straubhaar JR, Sabatini DM, Melton DA (2020) A nutrient-sensing transition at birth triggers glucose-responsive insulin secretion. Cell Metab 31(5):1004–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henquin JC, Meissner HP (1981) Effects of amino acids on membrane potential and 86Rb+ fluxes in pancreatic beta-cells. Am J Physiol 240(3):E245–E252

    CAS  PubMed  Google Scholar 

  • Hermans MP, Schmeer W, Henquin JC (1987) The permissive effect of glucose, tolbutamide and high K+ on arginine stimulation of insulin release in isolated mouse islets. Diabetologia 30(8):659–665

    Article  CAS  PubMed  Google Scholar 

  • Holm LJ, Haupt-Jorgensen M, Larsen J, Giacobini JD, Bilgin M, Buschard K (2018) L-serine supplementation lowers diabetes incidence and improves blood glucose homeostasis in NOD mice. PLoS ONE 13(3):e0194414

    Article  PubMed  PubMed Central  Google Scholar 

  • Imanzadeh H, Sefid-Sefidehkhan Y, Afshary H, Afruz A, Amiri M (2023) Nanomaterial-based electrochemical sensors for detection of amino acids. J Pharm Biomed Anal 230:115390

    Article  CAS  PubMed  Google Scholar 

  • Karusheva Y, Koessler T, Strassburger K, Markgraf D, Mastrototaro L, Jelenik T, Simon MC, Pesta D, Zaharia OP, Bodis K, Barenz F, Schmoll D, Wolkersdorfer M, Tura A, Pacini G, Burkart V, Mussig K, Szendroedi J, Roden M (2019) Short-term dietary reduction of branched-chain amino acids reduces meal-induced insulin secretion and modifies microbiome composition in type 2 diabetes: a randomized controlled crossover trial. Am J Clin Nutr 110(5):1098–1107

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolic J, Sun WG, Cen H, Ewald J, Beet L, Moravcova R, Rogalski JC, Sasaki S, Sun H, Rajesh V, Xia YH, Skovsø S, Spigelman AF, Fox JEM, Lyon J, Xia J, Lynn FC, Gloyn AL, Foster LJ, MacDonald PE, Johnson JD (2023) Proteomic predictors of individualized nutrient-specific insulin secretion in health and disease. medRxiv. https://doi.org/10.1101/2023.05.24.23290298

  • Kouw IW, Gorissen SH, Burd NA, Cermak NM, Gijsen AP, van Kranenburg J, van Loon LJ (2015) Postprandial protein handling is not impaired in type 2 diabetes patients when compared with normoglycemic controls. J Clin Endocrinol Metab 100(8):3103–3111

    Article  CAS  PubMed  Google Scholar 

  • Lean ME, Leslie WS, Barnes AC, Brosnahan N, Thom G, McCombie L, Peters C, Zhyzhneuskaya S, Al-Mrabeh A, Hollingsworth KG, Rodrigues AM, Rehackova L, Adamson AJ, Sniehotta FF, Mathers JC, Ross HM, McIlvenna Y, Stefanetti R, Trenell M, Welsh P, Kean S, Ford I, McConnachie A, Sattar N, Taylor R (2018) Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet 391(10120):541–551

    Article  PubMed  Google Scholar 

  • Lean MEJ, Leslie WS, Barnes AC, Brosnahan N, Thom G, McCombie L, Peters C, Zhyzhneuskaya S, Al-Mrabeh A, Hollingsworth KG, Rodrigues AM, Rehackova L, Adamson AJ, Sniehotta FF, Mathers JC, Ross HM, McIlvenna Y, Welsh P, Kean S, Ford I, McConnachie A, Messow CM, Sattar N, Taylor R (2019) Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol 7(5):344–355

    Article  PubMed  Google Scholar 

  • Leenders M, Verdijk LB, van der Hoeven L, van Kranenburg J, Hartgens F, Wodzig WK, Saris WH, van Loon LJ (2011) Prolonged leucine supplementation does not augment muscle mass or affect glycemic control in elderly type 2 diabetic men. J Nutr 141(6):1070–1076

    Article  CAS  PubMed  Google Scholar 

  • Lindgren O, Pacini G, Tura A, Holst JJ, Deacon CF, Ahren B (2015) Incretin effect after oral amino acid ingestion in humans. J Clin Endocrinol Metab 100(3):1172–1176

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Jeppesen PB, Gregersen S, Chen X, Hermansen K (2008) Dose- and glucose-dependent effects of amino acids on insulin secretion from isolated mouse islets and clonal INS-1E beta-cells. Rev Diabet Stud 5(4):232–244

    Article  PubMed  Google Scholar 

  • Liu Z, Jeppesen PB, Gregersen S, Larsen LB, Hermansen K (2012) Chronic exposure to leucine in vitro induces β-cell dysfunction in INS-1E cells and mouse islets. J Endocrinol 215(1):79–88

    Article  CAS  PubMed  Google Scholar 

  • Malaisse WJ, Hutton JC, Carpinelli AR, Herchuelz A, Sener A (1980) The stimulus-secretion coupling of amino acid-induced insulin release: metabolism and cationic effects of leucine. Diabetes 29(6):431–437

    Article  CAS  PubMed  Google Scholar 

  • Malaisse-Lagae F, Welsh M, Lebrun P, Herchuelz A, Sener A, Hellerström C, Malaisse WJ (1984) The stimulus-secretion coupling of amino acid-induced insulin release. Secretory and oxidative response of pancreatic islets to L-asparagine. Diabetes 33(5):464–469

    Article  CAS  PubMed  Google Scholar 

  • Manders RJ, Wagenmakers AJ, Koopman R, Zorenc AH, Menheere PP, Schaper NC, Saris WH, van Loon LJ (2005) Co-ingestion of a protein hydrolysate and amino acid mixture with carbohydrate improves plasma glucose disposal in patients with type 2 diabetes. Am J Clin Nutr 82(1):76–83

    Article  CAS  PubMed  Google Scholar 

  • Manders RJ, Koopman R, Sluijsmans WE, van den Berg R, Verbeek K, Saris WH, Wagenmakers AJ, van Loon LJ (2006) Co-ingestion of a protein hydrolysate with or without additional leucine effectively reduces postprandial blood glucose excursions in Type 2 diabetic men. J Nutr 136(5):1294–1299

    Article  CAS  PubMed  Google Scholar 

  • Manders RJ, Hansen D, Zorenc AH, Dendale P, Kloek J, Saris WH, van Loon LJ (2014) Protein co-ingestion strongly increases postprandial insulin secretion in type 2 diabetes patients. J Med Food 17(7):758–763

    Article  CAS  PubMed  Google Scholar 

  • McClenaghan NH, Barnett CR, O’Harte FP, Flatt PR (1996) Mechanisms of amino acid-induced insulin secretion from the glucose-responsive BRIN-BD11 pancreatic B-cell line. J Endocrinol 151(3):349–357

    Article  CAS  PubMed  Google Scholar 

  • McClenaghan NH, Barnett CR, Flatt PR (1998) Na+ cotransport by metabolizable and nonmetabolizable amino acids stimulates a glucose-regulated insulin-secretory response. Biochem Biophys Res Commun 249(2):299–303

    Article  CAS  PubMed  Google Scholar 

  • McClenaghan NH, Scullion SM, Mion B, Hewage C, Malthouse JP, Flatt PR, Newsholme P, Brennan L (2009) Prolonged L-alanine exposure induces changes in metabolism, Ca(2+) handling and desensitization of insulin secretion in clonal pancreatic beta-cells. Clin Sci (lond) 116(4):341–351

    Article  CAS  PubMed  Google Scholar 

  • Modi H, Cornu M, Thorens B (2014) Glutamine stimulates biosynthesis and secretion of insulin-like growth factor 2 (IGF2), an autocrine regulator of beta cell mass and function. J Biol Chem 289(46):31972–31982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullooly N, Vernon W, Smith DM, Newsholme P (2014) Elevated levels of branched-chain amino acids have little effect on pancreatic islet cells, but L-arginine impairs function through activation of the endoplasmic reticulum stress response. Exp Physiol 99(3):538–551

    Article  CAS  PubMed  Google Scholar 

  • Newsholme P, Bender K, Kiely A, Brennan L (2007) Amino acid metabolism, insulin secretion and diabetes. Biochem Soc Trans 35(Pt 5):1180–1186

    Article  CAS  PubMed  Google Scholar 

  • Newsholme P, Gaudel C, McClenaghan NH (2010) Nutrient regulation of insulin secretion and beta-cell functional integrity. Adv Exp Med Biol 654:91–114

    Article  CAS  PubMed  Google Scholar 

  • Newsholme P, Cruzat V, Arfuso F, Keane K (2014) Nutrient regulation of insulin secretion and action. J Endocrinol 221(3):R105–R120

    Article  CAS  PubMed  Google Scholar 

  • Noguchi GM, Huising MO (2019) Integrating the inputs that shape pancreatic islet hormone release. Nat Metab 1(12):1189–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacini G, Ahrén B, Göbl C, Tura A (2022) Assessing the effect of incretin hormones and other insulin secretagogues on pancreatic beta-cell function: review on mathematical modelling approaches. Biomedicines 10(5):1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson KR, Gyi KM, McBride D, Cohen HN, Shenkin A, Manderson WG, MacCuish AC (1985) Effect of sulphonyl urea administration on insulin secretion and amino acid metabolism in non-insulin-dependent diabetic patients. Diabet Med 2(1):38–40

    Article  CAS  PubMed  Google Scholar 

  • Pedersen MG, Tagliavini A, Henquin JC (2019) Calcium signaling and secretory granule pool dynamics underlie biphasic insulin secretion and its amplification by glucose: experiments and modeling. Am J Physiol Endocrinol Metab 316(3):E475–E486

    Article  CAS  PubMed  Google Scholar 

  • Rorsman P, Ashcroft FM (2018) Pancreatic β-cell electrical activity and insulin secretion: of mice and men. Physiol Rev 98(1):117–214

    Article  CAS  PubMed  Google Scholar 

  • Rorsman P, Braun M (2013) Regulation of insulin secretion in human pancreatic islets. Annu Rev Physiol 75:155–179

    Article  CAS  PubMed  Google Scholar 

  • Savage PJ, Bennion LJ, Flock EV, Bennett PH (1979) Beta cell dysfunction in maturity-onset diabetes: reversible loss of glucose-induced insulin secretion with retention of response to arginine. Adv Exp Med Biol 119:219–225

    Article  CAS  PubMed  Google Scholar 

  • Schmid R, Schusdziarra V, Schulte-Frohlinde E, Maier V, Classen M (1989) Role of amino acids in stimulation of postprandial insulin, glucagon, and pancreatic polypeptide in humans. Pancreas 4(3):305–314

    Article  CAS  PubMed  Google Scholar 

  • Sener A, Somers G, Devis G, Malaisse WJ (1981) The stimulus-secretion coupling of amino acid-induced insulin release. Biosynthetic and secretory responses of rat pancreatic islet to L-leucine and L-glutamine. Diabetologia 21(2):135–142

    Article  CAS  PubMed  Google Scholar 

  • Skytte MJ, Samkani A, Petersen AD, Thomsen MN, Astrup A, Chabanova E, Frystyk J, Holst JJ, Thomsen HS, Madsbad S, Larsen TM, Haugaard SB, Krarup T (2019) A carbohydrate-reduced high-protein diet improves HbA(1c) and liver fat content in weight stable participants with type 2 diabetes: a randomised controlled trial. Diabetologia 62(11):2066–2078

    Article  CAS  PubMed  Google Scholar 

  • Skytte MJ, Samkani A, Astrup A, Frystyk J, Rehfeld JF, Holst JJ, Madsbad S, Burling K, Fenger M, Thomsen MN (2020) Effects of carbohydrate restriction on postprandial glucose metabolism, beta-cell function, gut hormone secretion, and satiety in patients with type 2 diabetes. Am J Physiol Endocrinol Metab 320:E7–E18

    Article  PubMed  Google Scholar 

  • Sloun BV, Goossens GH, Erdos B, Lenz M, Riel NV, Arts ICW (2020) The impact of amino acids on postprandial glucose and insulin kinetics in humans: a quantitative overview. Nutrients 12(10):3211

    Article  PubMed  PubMed Central  Google Scholar 

  • Steven S, Hollingsworth KG, Al-Mrabeh A, Avery L, Aribisala B, Caslake M, Taylor R (2016) Very low-calorie diet and 6 months of weight stability in type 2 diabetes: pathophysiological changes in responders and nonresponders. Diabetes Care 39(5):808–815

    Article  CAS  PubMed  Google Scholar 

  • Taylor R, Al-Mrabeh A, Zhyzhneuskaya S, Peters C, Barnes AC, Aribisala BS, Hollingsworth KG, Mathers JC, Sattar N, Lean MEJ (2018) Remission of human type 2 diabetes requires decrease in liver and pancreas fat content but is dependent upon capacity for beta cell recovery. Cell Metab 28(4):547-556.e543

    Article  CAS  PubMed  Google Scholar 

  • Thomsen SK, Gloyn AL (2014) The pancreatic β cell: recent insights from human genetics. Trends Endocrinol Metab 25(8):425–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Totzauer M, Escribano J, Closa-Monasterolo R, Luque V, Verduci E, ReDionigi A, Langhendries JP, Martin F, Xhonneux A, Gruszfeld D, Socha P, Grote V, Koletzko B (2022) Different protein intake in the first year and its effects on adiposity rebound and obesity throughout childhood: 11 years follow-up of a randomized controlled trial. Pediatr Obes 17(12):e12961

    Article  PubMed  Google Scholar 

  • Tremblay F, Krebs M, Dombrowski L, Brehm A, Bernroider E, Roth E, Nowotny P, Waldhäusl W, Marette A, Roden M (2005) Overactivation of S6 kinase 1 as a cause of human insulin resistance during increased amino acid availability. Diabetes 54(9):2674–2684

    Article  CAS  PubMed  Google Scholar 

  • Turbitt J, Brennan L, Moffett RC, Flatt PR, Johnson PRV, Tarasov AI, McClenaghan NH (2023) NKCC transport mediates the insulinotropic effects of taurine and other small neutral amino acids. Life Sci 316:121402

    Article  CAS  PubMed  Google Scholar 

  • van Loon LJ, Kruijshoop M, Verhagen H, Saris WH, Wagenmakers AJ (2000) Ingestion of protein hydrolysate and amino acid-carbohydrate mixtures increases postexercise plasma insulin responses in men. J Nutr 130(10):2508–2513

    Article  PubMed  Google Scholar 

  • van Loon LJ, Kruijshoop M, Menheere PP, Wagenmakers AJ, Saris WH, Keizer HA (2003) Amino acid ingestion strongly enhances insulin secretion in patients with long-term type 2 diabetes. Diabetes Care 26(3):625–630

    Article  PubMed  Google Scholar 

  • Wang H, Kuang J, Xu M, Gao Z, Li Q, Liu S, Zhang F, Yu Y, Liang Z, Zhao W, Yang G, Li L, Wang Y, Li G (2019) Predictors of long-term glycemic remission after 2-week intensive insulin treatment in newly diagnosed type 2 diabetes. J Clin Endocrinol Metab 104(6):2153–2162

    Article  PubMed  Google Scholar 

  • Welsh M, Sener A, Malaisse-Lagae F, Malaisse WJ (1984) The stimulus-secretion coupling of amino acid-induced insulin release. Inhibition of islet respiration and insulin release by aminooxyacetate. Mol Cell Biochem 63(1):33–37

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Little TJ, Bound MJ, Borg M, Zhang X, Deacon CF, Horowitz M, Jones KL, Rayner CK (2016) A protein preload enhances the glucose-lowering efficacy of vildagliptin in type 2 diabetes. Diabetes Care 39(4):511–517

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Chi Y, Burkhardt BR, Guan Y, Wolf BA (2010) Leucine metabolism in regulation of insulin secretion from pancreatic beta cells. Nutr Rev 68(5):270–279

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This review was based upon observations taken from our respective in vitro and in vivo studies. We are grateful to all research participants past and present including the donors and their families who make our human islet research possible.

Funding

This work was supported by grants from the Fulbright Commission to N.G. and grants from Canadian Institutes for Health Research (PJT-152999) and JDRF (3-COE-2022–1103-M-B) to J.D.J.

Author information

Authors and Affiliations

Authors

Contributions

Nicola Guess and James Johnson conceived of the manuscript design. Nicola Guess, Jelena Kolic and James Johnson drafted the paper. Grace Sun, Nicola Guess and Jelena Kolic performed data collection and input. All authors provided critical review and approved the final manuscript.

Corresponding author

Correspondence to Nicola Guess.

Ethics declarations

Conflict of interest

The authors declare that there is no conflicts of interest.

Additional information

Handling editor: E. Closs.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 61 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolic, J., Sun, W.G., Johnson, J.D. et al. Amino acid-stimulated insulin secretion: a path forward in type 2 diabetes. Amino Acids 55, 1857–1866 (2023). https://doi.org/10.1007/s00726-023-03352-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-023-03352-8

Keywords

Navigation