Skip to main content

Advertisement

Log in

Mining proteomics data to extract post-translational modifications associated with gastric cancer

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Gastric cancers are highly heterogeneous, deep-seated tumours associated with late diagnosis and poor prognosis. Post-translational modifications (PTMs) of proteins are known to be well-associated with oncogenesis and metastasis in most cancers. Several enzymes which drive PTMs have also been used as theranostics in cancers of the breast, ovary, prostate and bladder. However, there is limited data on PTMs in gastric cancers. Considering that experimental protocols for simultaneous analysis of multiple PTMs are being explored, a data-driven approach involving reanalysis of mass spectrometry-derived data is useful in cataloguing altered PTMs. We subjected publicly available mass spectrometry data on gastric cancer to an iterative searching strategy for fetching PTMs including phosphorylation, acetylation, citrullination, methylation and crotonylation. These PTMs were catalogued and further analyzed for their functional enrichment through motif analysis. This value-added approach delivered identification of 21,710 unique modification sites on 16,364 modified peptides. Interestingly, we observed 278 peptides corresponding to 184 proteins to be differentially abundant. Using bioinformatics approaches, we observed that majority of these altered PTMs/proteins belonged to cytoskeletal and extracellular matrix proteins, which are known to be perturbed in gastric cancer. The dataset derived by this mutiPTM investigation can provide leads to further investigate the potential role of altered PTMs in gastric cancer management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The analysis data have been deposited to the ProteomeXchange Consortium (http://www.proteomecentral.proteomexchange.org) via the PRIDE partner repository with the dataset identifier PXD021887.

References

  • Assenov Y et al (2008) Computing topological parameters of biological networks. Bioinformatics (oxford, England) 24(2):282–284

    CAS  PubMed  Google Scholar 

  • Baldassarre M et al (2009) Filamins regulate cell spreading and initiation of cell migration. PLoS ONE 4(11):e7830

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen S-Y, Zhang R-G, Duan G-C (2016) Pathogenic mechanisms of the oncoprotein CagA in H. pylori-induced gastric cancer (review). Oncol Rep 36(6):3087–3094

    Article  PubMed  Google Scholar 

  • Cheng A, Grant CE, Noble WS, Bailey TL (2019) MoMo: discovery of statistically significant post-translational modification motifs. Bioinformatics (oxford, England) 35(16):2774–2782

    CAS  PubMed  Google Scholar 

  • Chick JM et al (2015) A mass-tolerant database search identifies a large proportion of unassigned spectra in shotgun proteomics as modified peptides. Nat Biotechnol 33(7):743–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou MF, Schwartz D (2011) Biological sequence motif discovery using Motif-X. Curr Protoc Bioinformatics 13:15–24

    Google Scholar 

  • Correa P, Blanca Piazuelo. M (2012) The gastric precancerous cascade. J Dig Dis 13(1):2–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Deolankar SC et al (2021) Mapping post-translational modifications in brain regions in Alzheimer’s disease using proteomics data mining. OMICS 25(8):525–536

    Article  CAS  PubMed  Google Scholar 

  • Eble JA, Niland S (2019) The extracellular matrix in tumor progression and metastasis. Clin Exp Metas 36(3):171–198. https://doi.org/10.1007/s10585-019-09966-1

    Article  CAS  Google Scholar 

  • Eng JK, McCormack AL, Yates JR (1994) An Approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5(11):976–989

    Article  CAS  PubMed  Google Scholar 

  • Fabregat A et al (2018) The reactome pathway knowledgebase. Nucleic Acids Res 46(D1):D649–D655

    Article  CAS  PubMed  Google Scholar 

  • Ge S et al (2018) A proteomic landscape of diffuse-type gastric cancer. Nat Commun 9(1):1–16. https://doi.org/10.1038/s41467-018-03121-2

    Article  CAS  Google Scholar 

  • Guszczyn T, Sobolewski K (2004) Deregulation of collagen metabolism in human stomach cancer. Pathobiology 71(6):308–313

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG (1990) Roles of protein kinases and phosphatases in signal transduction. Symp Soc Exp Biol 44:241–255

    CAS  PubMed  Google Scholar 

  • Hicks SC et al (2018) smooth quantile normalization. Biostatistics (oxford, England) 19(2):185–198

    Article  PubMed  Google Scholar 

  • Ho Ting SW, Tan P (2019) Dissection of gastric cancer heterogeneity for precision oncology. Cancer Sci 110(11):3405–3414

    Article  Google Scholar 

  • Kang, Changwon, Yejin Lee, and J. Eugene Lee. 2016. “Recent Advances in Mass Spectrometry-Based Proteomics of Gastric Cancer.” World journal of gastroenterology 22 (37): 8283–93. https://www.ncbi.nlm.nih.gov/pubmed/27729735.

  • Karty JA, Ireland MME, Brun YV, Reilly JP (2002) Artifacts and unassigned masses encountered in peptide mass mapping. J Chromatograp b, Analyt Technol Biomed Life Sci 782(1–2):363–383

    Article  CAS  Google Scholar 

  • Kurochkina N, Guha U (2013) SH3 Domains: modules of protein-protein interactions. Biophys Rev 5(1):29–39

    Article  CAS  PubMed  Google Scholar 

  • LAUREN, P. (1965) The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand 64:31–49

    Article  PubMed  Google Scholar 

  • Leon DR et al (2015) Mining proteomic data to expose protein modifications in Methanosarcina Mazei strain Gö1. Front Microbiol 6:149

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y-R, Yang W-X (2016) Myosins as fundamental components during tumorigenesis: diverse and indispensable. Oncotarget 7(29):46785–46812

    Article  PubMed  PubMed Central  Google Scholar 

  • Lluch-Senar M et al (2016) Rescuing discarded spectra: full comprehensive analysis of a minimal proteome. Proteomics 16(4):554–563

    Article  CAS  PubMed  Google Scholar 

  • Maekawa M et al (1999) Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285(5429):895–898

    Article  CAS  PubMed  Google Scholar 

  • Morris LE, Bloom GS, Henry F Jr, Frierson, and Steven M Powell. (2005) Nucleotide variants within the IQGAP1 gene in diffuse-type gastric cancers. Genes Chromosom Cancer 42(3):280–286

    Article  CAS  PubMed  Google Scholar 

  • Nesvizhskii AI et al (2006) Dynamic spectrum quality assessment and iterative computational analysis of shotgun proteomic data: toward more efficient identification of post-translational modifications, sequence polymorphisms, and novel peptides. Molec Cellular Proteomics : MCP 5(4):652–670

    Article  CAS  Google Scholar 

  • Ning K, Fermin D, Nesvizhskii AI (2010) Computational analysis of unassigned high-quality MS/MS spectra in proteomic data sets. Proteomics 10(14):2712–2718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Flaherty C, de Lamirande E, Gagnon C (2004) Phosphorylation of the arginine-X-X-(Serine/Threonine) motif in human sperm proteins during capacitation: modulation and protein kinase a dependency. Mol Hum Reprod 10(5):355–363

    Article  PubMed  Google Scholar 

  • Palollathil A et al (2021) Omics data mining for MultiPTMs in oral cancer: cellular proteome and secretome of chronic tobacco-treated oral keratinocytes. OMICS 25(7):450–462

    Article  CAS  PubMed  Google Scholar 

  • Park, Jong Moon Ji-Hwan Hwan Jong-Moon et al. 2015. “Integrated Analysis of Global Proteome, Phosphoproteome, and Glycoproteome Enables Complementary Interpretation of Disease-Related Protein Networks.” Scientific reports 5(December): 18189. https://www.ncbi.nlm.nih.gov/pubmed/26657352.

  • Pascovici D et al (2018) Clinically relevant post-translational modification analyses-maturing workflows and bioinformatics tools. Int J Molec Sci 20(1):16

    Article  Google Scholar 

  • Pathan M, Samuel M, Keerthikumar S, Mathivanan S (2017) Unassigned MS/MS Spectra: Who Am I? Methods Molecul Biol 1549:67–74

    Article  CAS  Google Scholar 

  • Patil AH et al (2018) Dissecting candida pathobiology: post-translational modifications on the candida tropicalis proteome. OMICS 22(8):544–552

    Article  CAS  PubMed  Google Scholar 

  • Perez-Riverol Y et al (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47(D1):D442–D450

    Article  CAS  PubMed  Google Scholar 

  • Rawla P, Barsouk A (2019) Epidemiology of gastric cancer: global trends, risk factors and prevention. Przeglad Gastroenterologiczny 14(1):26–38

    CAS  PubMed  Google Scholar 

  • Rex DA, Balaya, et al (2021) Novel post-translational modifications and molecular substrates in glioma identified by bioinformatics. OMICS 25(7):463–473

    Article  CAS  PubMed  Google Scholar 

  • Sanyal S et al (2020) SUMO E3 ligase CBX4 regulates HTERT-mediated transcription of CDH1 and promotes breast cancer cell migration and invasion. Biochem J 477(19):3803–3818

    Article  CAS  PubMed  Google Scholar 

  • Szklarczyk D et al (2019) STRING V11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613

    Article  CAS  PubMed  Google Scholar 

  • Taus T et al (2011) Universal and confident phosphorylation site localization using phosphoRS. J Proteome Res 10(12):5354–5362

    Article  CAS  PubMed  Google Scholar 

  • Tran DT et al (2016) Evolution of a mass spectrometry-grade protease with PTM-directed specificity. Proc Natl Acad Sci USA 113(51):14686–14691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vizcaíno JA et al (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32(3):223–226

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan J, Liu H, Chu J, Zhang H (2019) Functions and mechanisms of lysine crotonylation. J Cell Mol Med 23(11):7163–7169

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J et al (2015) ClusterViz: a cytoscape APP for cluster analysis of biological network. IEEE/ACM Trans Comput Biol Bioinf 12(4):815–822

    Article  Google Scholar 

  • Wang X et al (2020) Altering MYC phosphorylation in the epidermis increases the stem cell population and contributes to the development, progression, and metastasis of squamous cell carcinoma. Oncogenesis 9(9):79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen Y-C et al (2020) Melatonin-triggered post-transcriptional and post-translational modifications of ADAMTS1 coordinately retard tumorigenesis and metastasis of renal cell carcinoma. J Pineal Res 69(2):e12668

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Huang R, Yuan L (2019) Crosstalk of intracellular post-translational modifications in cancer. Arch Biochem Biophys 676:108138

    Article  CAS  PubMed  Google Scholar 

  • Yuzhalin AE (2019) Citrullination in Cancer. Can Res 79(7):1274–1284

    Article  CAS  Google Scholar 

  • Zhang B et al (2017) Elevated PRC1 in gastric carcinoma exerts oncogenic function and is targeted by piperlongumine in a p53-dependent manner. J Cell Mol Med 21(7):1329–1341

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Government of Karnataka for funding Yenepoya (Deemed to be University) under Biotechnology Skill Enhancement Programme (BiSEP). PR is a recipient of Senior Research Fellowship from the India Council of Medical Research (ICMR), Government of India. SKB is a recipient of the BINC Junior Research Fellowship from the Department of Biotechnology (DBT), Government of India. VM is a recipient of the Women Scientist A Fellowship from the Department of Science and Technology (DST), Government of India. RR is a recipient of the Young Scientist Award (YSS/2014/000607) from the Science and Engineering Research Board, Department of Science and Technology (DST), Government of India.

Funding

No funding was received for the study.

Author information

Authors and Affiliations

Authors

Contributions

TSKP and JAKC conceived the study and designed the research workflow. PR, SKB and CNK conducted analysis. VM and RR contributed to the method, data analysis and manuscript writing. PR and SKB analyzed the data and wrote the manuscript. All the authors have read and approved the manuscript.

Corresponding authors

Correspondence to T. S. Keshava Prasad or Jalaluddin Akbar Kandel Codi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors have no financial or proprietary interests in any of the material discussed in this article.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling editor: K. Barnouin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, P., Behera, S.K., Kotimoole, C.N. et al. Mining proteomics data to extract post-translational modifications associated with gastric cancer. Amino Acids 55, 993–1001 (2023). https://doi.org/10.1007/s00726-023-03287-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-023-03287-0

Keywords

Navigation