Akhmanova A, Hoogenraad CC (2018) More is not always better: hyperglutamylation leads to neurodegeneration. EMBO J 37(23):e101023. https://doi.org/10.15252/embj.2018101023
CAS
Article
PubMed
PubMed Central
Google Scholar
Alexander JE, Hunt DF, Lee MK, Shabanowitz J, Michel H, Berlin SC, MacDonald TL, Sundberg RJ, Rebhun LI, Frankfurter A (1991) Characterization of posttranslational modifications in neuron-specific class III beta-tubulin by mass spectrometry. Proc Natl Acad Sci USA 88(11):4685–4689. https://doi.org/10.1073/pnas.88.11.4685
CAS
Article
PubMed
PubMed Central
Google Scholar
Beer I, Barnea E, Ziv T, Admon A (2004) Improving large-scale proteomics by clustering of mass spectrometry data. Proteomics 4(4):950–960. https://doi.org/10.1002/pmic.200300652
CAS
Article
PubMed
Google Scholar
Berezniuk I, Vu HT, Lyons PJ, Sironi JJ, Xiao H, Burd B, Setou M, Angeletti RH, Ikegami K, Fricker LD (2012) Cytosolic carboxypeptidase 1 is involved in processing α- and β-tubulin. J Biol Chem 287(9):6503–6517. https://doi.org/10.1074/jbc.M111.309138
CAS
Article
PubMed
Google Scholar
Berezniuk I, Lyons PJ, Sironi JJ, Xiao H, Setou M, Angeletti RH, Ikegami K, Fricker LD (2013) Cytosolic carboxypeptidase 5 removes α- and γ-linked glutamates from tubulin. J Biol Chem 288(42):30445–30453. https://doi.org/10.1074/jbc.M113.497917
CAS
Article
PubMed
PubMed Central
Google Scholar
Bhogaraju S, Kalayil S, Liu Y, Bonn F, Colby T, Matic I, Dikic I (2016) Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination. Cell 167(6):1636-1649.e13. https://doi.org/10.1016/j.cell.2016.11.019
CAS
Article
PubMed
Google Scholar
Bhogaraju S, Bonn F, Mukherjee R, Adams M, Pfleiderer MM, Galej WP, Matkovic V, Lopez-Mosqueda J, Kalayil S, Shin D, Dikic I (2019) Inhibition of bacterial ubiquitin ligases by SidJ-calmodulin catalysed glutamylation. Nature 572(7769):382–386. https://doi.org/10.1038/s41586-019-1440-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Black MH, Osinski A, Gradowski M, Servage KA, Pawłowski K, Tomchick DR, Tagliabracci VS (2019) Bacterial pseudokinase catalyzes protein polyglutamylation to inhibit the SidE-family ubiquitin ligases. Science 364:787–792. https://doi.org/10.1126/science.aaw7446
CAS
Article
PubMed
PubMed Central
Google Scholar
Bodakuntla S, Janke C, Magiera MM (2021a) Tubulin polyglutamylation, a regulator of microtubule functions, can cause neurodegeneration. Neurosci Lett 746:135656. https://doi.org/10.1016/j.neulet.2021.135656
CAS
Article
PubMed
Google Scholar
Bodakuntla S, Yuan X, Genova M, Gadadhar S, Leboucher S, Birling MC, Klein D, Martini R, Janke C, Magiera MM (2021b) Distinct roles of α- and β-tubulin polyglutamylation in controlling axonal transport and in neurodegeneration. EMBO J 40(17):e108498. https://doi.org/10.15252/embj.2021108498
CAS
Article
PubMed
Google Scholar
Bollenbach A, Tsikas D (2020) Measurement of the tripeptides glutathione and ophthalmic acid by gas chromatography–mass spectrometry. Anal Biochem. https://doi.org/10.1016/j.ab.2020.113841
Article
PubMed
Google Scholar
Bompard G, van Dijk J, Cau J et al (2018) CSAP acts as a regulator of TTLL-mediated microtubule glutamylation. Cell Rep 25(10):2866–2877. https://doi.org/10.1016/j.celrep.2018.10.095
CAS
Article
PubMed
Google Scholar
Chin HG, Esteve PO, Ruse C, LeeJ SSE, Pradhan S, Hansen U (2020) The microtubule-associated histone methyltransferase SET8, facilitated by transcription factor LSF, methylates α-tubulin. J Biol Chem 295(14):4748–4759. https://doi.org/10.1074/jbc.RA119.010951
CAS
Article
PubMed
PubMed Central
Google Scholar
Deutsch JC, Santhosh-Kumar CR, Kolhouse JF (1999) Glutathione oxidation in real time by thermospray liquid chromatography–mass spectrometry. J Chromatogr A 862(2):161–168. https://doi.org/10.1016/s0021-9673(99)00932-2
CAS
Article
PubMed
Google Scholar
Dookeran NN, Yalcin T, Harrison AG (1996) Fragmentation reactions of protonated α-amino acids. J Mass Spect 31(5):500–508. https://doi.org/10.1002/(SICI)1096-9888(199605)31:5<500::AID-JMS327>3.0.CO;2-Q
Article
Google Scholar
Eddé B, Rossier J, Le Caer JP, Desbruyères E, Gros F, Denoulet P (1990) Posttranslational glutamylation of alpha-tubulin. Science 247(4938):83–85. https://doi.org/10.1126/science.1967194
Article
PubMed
Google Scholar
Eipper BA (1974) Properties of rat brain tubulin. J Biol Chem 249(5):1407–1416
CAS
Article
PubMed
Google Scholar
Foster LJ, De Hoog CL, Mann M (2003) Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc Natl Acad Sci USA 100(10):5813–5818. https://doi.org/10.1073/pnas.0631608100
CAS
Article
PubMed
PubMed Central
Google Scholar
Gadadhar S, Dadi H, Bodakuntla S, Schnitzler A, Bièche I, Rusconi F, Janke C (2017) Tubulin glycylation controls primary cilia length. J Cell Biol 216(9):2701–2713. https://doi.org/10.1083/jcb.201612050 (Epub 2017 Jul 7)
CAS
Article
PubMed
PubMed Central
Google Scholar
Gan N, Zhen X, Liu Y et al (2019) Regulation of phosphoribosyl ubiquitination by a calmodulin-dependent glutamylase. Nature 572(7769):387–391. https://doi.org/10.1038/s41586-019-1439-1 (Epub 2019 Jul 22)
CAS
Article
PubMed
PubMed Central
Google Scholar
Grigoryan M, Shamshurin D, Spicer V, Krokhin OV (2013) Unifying expression scale for peptide hydrophobicity in proteomic reversed phase high-pressure liquid chromatography experiments. Anal Chem 85(22):10878–10886. https://doi.org/10.1021/ac402310t (Epub 2013 Nov 1)
CAS
Article
PubMed
Google Scholar
Han H, Schubert HL, McCullough J et al (2020) Structure of spastin bound to a glutamate-rich peptide implies a hand-over-hand mechanism of substrate translocation. J Biol Chem 295(2):435–443. https://doi.org/10.1074/jbc.AC119.009890
CAS
Article
PubMed
Google Scholar
Harrison AG (2001) Ion chemistry of protonated glutamic acid derivatives. Int J Mol Sci 210–211:361–370. https://doi.org/10.1016/S1387-3806(01)00405-5
Article
Google Scholar
Hemling ME, Roberts GD, Johnson W, Carr SA, Covey TR (1990) Analysis of proteins and glycoproteins at the picomole level by on-line coupling of microbore high-performance liquid chromatography with flow fast atom bombardment and electrospray mass spectrometry: a comparative evaluation. Biomed Environ Mass Spectrom 19(11):677–691. https://doi.org/10.1002/bms.1200191107
CAS
Article
PubMed
Google Scholar
Hirokawa N, Noda Y (2008) Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol Rev 88(3):1089–1118. https://doi.org/10.1152/physrev.00023.2007
CAS
Article
PubMed
Google Scholar
Horwich AL, Apetri AC, Fenton WA (2009) The GroEL/GroES cis cavity as a passive anti-aggregation device. FEBS Lett 583(16):2654–2662. https://doi.org/10.1016/j.febslet.2009.06.049
CAS
Article
PubMed
PubMed Central
Google Scholar
Hubber A, Roy CR (2010) Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol 26:261–283. https://doi.org/10.1146/annurev-cellbio-100109-104034
CAS
Article
PubMed
Google Scholar
Janke C, Kneussel M (2010) Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton. Trends Neurosci 33(8):362–372. https://doi.org/10.1016/j.tins.2010.05.001
CAS
Article
PubMed
Google Scholar
Janke C, Magiera MM (2020) The tubulin code and its role in controlling microtubule properties and functions. Nat Rev Mol Cell Biol 21(6):307–326. https://doi.org/10.1038/s41580-020-0214-3
CAS
Article
PubMed
Google Scholar
Janke C, Rogowski K, van Dijk J (2008) Polyglutamylation: a fine-regulator of protein function? “Protein Modifications: beyond the usual suspects” review series. EMBO Rep 9(7):636–641. https://doi.org/10.1038/embor.2008.114
CAS
Article
PubMed
PubMed Central
Google Scholar
Joe PA, Banerjee A, Ludueña RF (2009) Roles of beta-tubulin residues Ala428 and Thr429 in microtubule formation in vivo. J Biol Chem 284(7):4283–4291. https://doi.org/10.1074/jbc.M807491200
CAS
Article
PubMed
Google Scholar
Kalinina E, Biswas R, Berezniuk I, Hermoso A, Aviles FX, Fricker LD (2007) A novel subfamily of mouse cytosolic carboxypeptidases. FASEB J 21(3):836–850. https://doi.org/10.1096/fj.06-7329com
CAS
Article
PubMed
Google Scholar
Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10(12):524–530. https://doi.org/10.1016/S0962-8924(00)01852-3
CAS
Article
PubMed
Google Scholar
Kotewicz KM, Ramabhadran V, Sjoblom N et al (2017) A single legionella effector catalyzes a multistep ubiquitination pathway to rearrange tubular endoplasmic reticulum for replication. Cell Host Microbe 21(2):169–181. https://doi.org/10.1016/j.chom.2016.12.007
CAS
Article
PubMed
Google Scholar
Krokhin O (2012) Peptide retention prediction in reversed-phase chromatography: proteomic applications. Expert Rev Proteomics 9(1):1–4. https://doi.org/10.1586/epr.11.79
CAS
Article
PubMed
Google Scholar
Li J, Snyder EY, Tang FHF, Pasqualini R, Arap W, Sidman RL (2020) Nna1 gene deficiency triggers Purkinje neuron death by tubulin hyperglutamylation and ER dysfunction. JCI Insight 5(19):e136078. https://doi.org/10.1172/jci.insight.136078
Article
PubMed Central
Google Scholar
Ludueña RF (1993) Are tubulin isotypes functionally significant. Mol Biol Cell 4(5):445–457. https://doi.org/10.1091/mbc.4.5.445
Article
PubMed
PubMed Central
Google Scholar
Magiera MM, Janke C (2013) Investigating tubulin posttranslational modifications with specific antibodies. Methods Cell Biol 115:247–267. https://doi.org/10.1016/B978-0-12-407757-7.00016-5
CAS
Article
PubMed
Google Scholar
Magiera MM, Janke C (2014) Post-translational modifications of tubulin. Curr Biol 24:R351–R354. https://doi.org/10.1016/j.cub.2014.03.032
CAS
Article
PubMed
Google Scholar
Magiera MM, Singh P, Gadadhar S, Janke C (2018a) Tubulin posttranslational modifications and emerging links to human disease. Cell 173(6):1323–1327. https://doi.org/10.1016/j.cell.2018.05.018
CAS
Article
PubMed
Google Scholar
Magiera MM, Bodakuntla S, Žiak J et al (2018b) Excessive tubulin polyglutamylation causes neurodegeneration and perturbs neuronal transport. EMBO J 37(23):e100440. https://doi.org/10.15252/embj.2018100440
CAS
Article
PubMed
PubMed Central
Google Scholar
Mahalingan KK, Keith Keenan E, Strickland M et al (2020) Structural basis for polyglutamate chain initiation and elongation by TTLL family enzymes. Nat Struct Mol Biol 27(9):802–813. https://doi.org/10.1038/s41594-020-0462-0
CAS
Article
PubMed
Google Scholar
Mañes S, del Real G, Martínez-A C (2003) Pathogens: raft hijackers. Nat Rev Immunol 3(7):557–568. https://doi.org/10.1038/nri1129
CAS
Article
PubMed
Google Scholar
McClung C, Chin HG, Hansen U, Noren CJ, Pradhan S, Ruse CI (2020) Mapping of polyglutamylation in tubulins using nanoLC–ESI–MS/MS. Anal Biochem 612:113761. https://doi.org/10.1016/j.ab.2020.113761
CAS
Article
PubMed
Google Scholar
Natarajan K, Gadadhar S, Souphron J, Magiera MM, Janke C (2017) Molecular interactions between tubulin tails and glutamylases reveal determinants of glutamylation patterns. EMBO Rep 18(6):1013–1026. https://doi.org/10.15252/embr.201643751
CAS
Article
PubMed
PubMed Central
Google Scholar
Onikubo T, Nicklay JJ, Xing L, Warren C, Anson B, Wang WL, Burgos ES, Ruff SE, Shabanowitz J, Cheng RH, Hunt DF, Shechter D (2015) Developmentally regulated post-translational modification of nucleoplasmin controls histone sequestration and deposition. Cell Rep 10(10):1735–1748. https://doi.org/10.1016/j.celrep.2015.02.038
CAS
Article
PubMed
PubMed Central
Google Scholar
Park JH, Roll-Mecak A (2018) The tubulin code in neuronal polarity. Curr Opin Neurobiol 51:95–102. https://doi.org/10.1016/j.conb.2018.03.001
CAS
Article
PubMed
PubMed Central
Google Scholar
Park IY, Powell RT, Tripathi DN, Dere R, Ho TH, Blasius TL, Chiang YC, Davis IJ, Fahey CC, Hacker KE, Verhey KJ, Bedford MT, Jonasch E, Rathmell WK, Walker CL (2016) Dual chromatin and cytoskeletal remodeling by SED2. Cell 116(4):950–962. https://doi.org/10.1016/j.cell.2016.07.005
CAS
Article
Google Scholar
Qiu J, Sheedlo MJ, Yu K, Tan Y, Nakayasu ES, Das C, Liu X, Luo ZQ (2016) Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature 533(7601):120–124. https://doi.org/10.1038/nature17657
CAS
Article
PubMed
PubMed Central
Google Scholar
Redeker V, Le Caer JP, Rossier J, Promé JC (1991) Structure of the polyglutamyl side chain posttranslationally added to alpha-tubulin. J Biol Chem 266(34):23461–23466
CAS
Article
PubMed
Google Scholar
Redeker V, Melki R, Promé D, Le Caer JP, Rossier J (1992) Structure of tubulin C-terminal domain obtained by subtilisin treatment. The major alpha and beta tubulin isotypes from pig brain are glutamylated. FEBS Lett 313(2):185–192. https://doi.org/10.1016/0014-5793(92)81441-N
CAS
Article
PubMed
Google Scholar
Redeker V, Rossier J, Frankfurter A (1998) Posttranslational modifications of the C-terminus of alpha-tubulin in adult rat brain: alpha 4 is glutamylated at two residues. Biochemistry 37(42):14838–14844. https://doi.org/10.1021/bi981335k
CAS
Article
PubMed
Google Scholar
Redwine WB, DeSantis ME, Hollyer IH et al (2017) The human cytoplasmic dynein interactome reveals novel activators of motility. Elife 6:e28257. https://doi.org/10.7554/eLife.28257
Article
PubMed
PubMed Central
Google Scholar
Rogowski K, van Dijk J, Magiera MM et al (2010) A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell 143(4):564–578. https://doi.org/10.1016/j.cell.2010.10.014
CAS
Article
PubMed
Google Scholar
Roll-Mecak A (2015) Intrinsically disordered tubulin tails: complex tuners of microtubule functions? Semin Cell Dev Biol 37:11–19. https://doi.org/10.1016/j.semcdb.2014.09.026
CAS
Article
PubMed
Google Scholar
Rüdiger M, Plessman U, Klöppel KD, Wehland J, Weber K (1992) Class II tubulin, the major brain beta tubulin isotype is polyglutamylated on glutamic acid residue 435. FEBS Lett 308(1):101–105. https://doi.org/10.1016/0014-5793(92)81061-P
Article
PubMed
Google Scholar
Rüdiger M, Wehland J, Weber K (1994) The carboxy-terminal peptide of detyrosinated alpha tubulin provides a minimal system to study the substrate specificity of tubulin-tyrosine ligase. Eur J Biochem 220(2):309–320. https://doi.org/10.1111/j.1432-1033.1994.tb18627.x
Article
PubMed
Google Scholar
Rüdiger A, Rüdiger M, Weber K, Schomburg D (1995) Characterization of post-translational modifications of brain tubulin by matrix-assisted laser desorption/ionization mass spectrometry: direct one-step analysis of a limited subtilisin digest. Anal Biochem 224(2):532–537
Article
PubMed
Google Scholar
Sahab ZJ, Kirilyuk A, Zhang L, Khamis ZI, Pompach P, Sung Y, Byers SW (2012) Analysis of tubulin alpha-1A/1B C-terminal tail post-translational poly-glutamylation reveals novel modification sites. J Proteome Res 11(3):1913–1923. https://doi.org/10.1021/pr2011044
CAS
Article
PubMed
PubMed Central
Google Scholar
Schmidt-Cernohorska M, Zhernov I, Steib E et al (2019) Flagellar microtubule doublet assembly in vitro reveals a regulatory role of tubulin C-terminal tails. Science 363(6424):285–288. https://doi.org/10.1126/science.aav2567
CAS
Article
PubMed
Google Scholar
Schneider A, Plessmann U, Weber K (1997) Subpellicular and flagellar microtubules of Trypanosoma brucei are extensively glutamylated. J Cell Sci 110(Pt 4):431–437
CAS
Article
PubMed
Google Scholar
Schneider A, Plessmann U, Felleisen R, Weber K (1998) Posttranslational modifications of trichomonad tubulins; identification of multiple glutamylation sites. FEBS Lett 429(3):399–402
CAS
Article
PubMed
Google Scholar
Seifert WE Jr, Caprioli RM (1996) Fast atom bombardment mass spectrometry. Methods Enzymol 270:453–486
CAS
Article
PubMed
Google Scholar
Shashi V, Magiera MM, Klein D, Zaki M et al (2018) Loss of tubulin deglutamylase CCP1 causes infantile-onset neurodegeneration. EMBO J 37(23):e100540
Article
PubMed
PubMed Central
Google Scholar
Sheikh AM, Yano S, Tabassum S, Omura K, Araki A, Mitaki S, Ito Y, Huang S, Nagai A (2021) Alteration of neural stem cell functions in ataxia and male sterility mice: a possible role of beta-tubulin glutamylation in neurodegeneration. Cells 10(1):155. https://doi.org/10.3390/cells10010155
CAS
Article
PubMed
PubMed Central
Google Scholar
Sirajuddin M, Rice LM, Vale RD (2014) Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat Cell Biol 16(4):335–344. https://doi.org/10.1038/ncb2920
CAS
Article
PubMed
PubMed Central
Google Scholar
Sulpizio A, Minelli ME, Wan M et al (2019a) Protein polyglutamylation catalyzed by the bacterial calmodulin-dependent pseudokinase SidJ. Elife 8:e51162. https://doi.org/10.7554/eLife.51162
CAS
Article
PubMed
PubMed Central
Google Scholar
Sulpizio AG, Minelli ME, Mao Y (2019b) Glutamylation of bacterial ubiquitin ligases by a legionella pseudokinase. Trends Microbiol 27(12):967–969
CAS
Article
PubMed
PubMed Central
Google Scholar
Tsikas D, Duncan MW (2014) Mass spectrometry and 3-nitrotyrosine: strategies, controversies, and our current perspective. Mass Spectrom Rev 33(4):237–276. https://doi.org/10.1002/mas.21396
CAS
Article
PubMed
Google Scholar
Valenstein ML, Roll-Mecak A (2016) Graded control of microtubule severing by tubulin glutamylation. Cell 164(5):911–921. https://doi.org/10.1016/j.cell.2016.01.019
CAS
Article
PubMed
PubMed Central
Google Scholar
van der Laan S, Lévêque MF, Marcellin G et al (2019) Evolutionary divergence of enzymatic mechanisms for tubulin detyrosination. Cell Rep 29(12):4159–4171. https://doi.org/10.1016/j.celrep.2019.11.074
CAS
Article
PubMed
Google Scholar
van Dijk J, Miro J, Strub JM, Lacroix B, van Dorsselaer A, Edde B, Janke C (2008) Polyglutamylation is a post-translational modification with a broad range of substrates. J Biol Chem 283(7):3915–3922. https://doi.org/10.1074/jbc.M705813200
CAS
Article
PubMed
Google Scholar
Vitali RA, Inamine RS, Jacob TA (1965) The isolation of γ-l-glutamyl peptides from a fermentation broth. J Biol Chem 240:2508–2511
CAS
Article
PubMed
Google Scholar
Wang J, Farr GW, Zeiss CJ et al (2009) Progressive aggregation despite chaperone associations of a mutant SOD1-YFP in transgenic mice that develop ALS. Proc Natl Acad Sci USA 106(5):1392–1397. https://doi.org/10.1073/pnas.0813045106
Article
PubMed
PubMed Central
Google Scholar
Watarai M, Derre I, Kirby J, Growney JD, Dietrich WF, Isberg RR (2001) Legionella pneumophila is internalized by a macropinocytotic uptake pathway controlled by the Dot/Icm system and the mouse Lgn1 locus. J Exp Med 194(8):1081–1096. https://doi.org/10.1084/jem.194.8.1081
CAS
Article
PubMed
PubMed Central
Google Scholar
Westermann S, Plessmann U, Weber K (1999a) Synthetic peptides identify the minimal substrate requirements of tubulin polyglutamylase in side chain elongation. FEBS Lett 459(1):90–94
CAS
Article
PubMed
Google Scholar
Westermann S, Schneider A, Horn EK, Weber K (1999b) Isolation of tubulin polyglutamylase from Crithidia; binding to microtubules and tubulin, and glutamylation of mammalian brain alpha- and beta-tubulins. J Cell Sci 112(Pt 13):2185–2193
CAS
Article
PubMed
Google Scholar
Wloga D, Joachimiak E, Fabczak H (2017) Tubulin post-translational modifications and microtubule dynamics. Int J Mol Sci 18(10):2207. https://doi.org/10.3390/ijms18102207
CAS
Article
PubMed Central
Google Scholar
Xu G, Chance MR (2007) Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chem Rev 107(8):3514–3543. https://doi.org/10.1021/cr0682047
CAS
Article
PubMed
Google Scholar