Skip to main content

Advertisement

Log in

Mediatory role of the dopaminergic system through D1 receptor on glycine-induced hypophagia in neonatal broiler-type chickens

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The present study aimed to examine the mediatory role of the dopaminergic system in the food intake induced by intracerebroventricular (ICV) injection of glycine in neonatal 3-h feed-deprived (FD3) meat-type chickens. In the first and second experiments, birds were ICV injected using low and high doses of glycine (50, 100 and 200 nmol) and strychnine (50, 100 and 200 nmol), respectively. In experiments 3–9, the behaviorally subeffective doses of dopamine (10 nmol), 6-OHDA (2.5 nmol), SCH 23,390 (D1 antagonist; 5 nmol), AMI-193 (D2 antagonist; 5 nmol), NGB2904 (D3 antagonist; 6.4 nmol) and L-741,742 (D4 antagonist; 6 nmol) were, respectively, co-administrated with glycine (200 nmol) in FD3 5-day-old chicks to investigate possible interplay of dopamine receptors in glycine-induced feeding behavior. Then, cumulative food intake based on body weight percentage (%BW) was determined at 30, 60 and 120 min after the injection. According to the results, dopamine significantly boosted the hypophagia induced by glycine at all-time intervals (p ≤ 0.001). These results combined with the previous findings suggest an interplay between dopamine and glycine in chicken’s brain in which D1 receptor-mediated food intake induced by glycine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abe Y, Furukawa K, Itoyama Y, Akaika N (1994) Glycine response in the acutely dissociated ventromedial hypothalamic neuron of the rat. J Neurophysiol 72:1530–1537

    Article  CAS  PubMed  Google Scholar 

  • Alimohammadi S, Zendehdel M, Babapour V (2015) Modulation of opioid-induced feeding behavior by endogenous nitric oxide in neonatal layer-type chicks. Vet Res Commun 39(2):105–113

    Article  PubMed  Google Scholar 

  • Alizadeh A, Zendehdel M, Babapour V (2015) Role of cannabinoidergic system on food intake in neonatal layer-type chicken. Vet Res Commun 39(2):151–157

    Article  PubMed  Google Scholar 

  • Ascher P (1990) Measuring and controlling the extracellular glycine concentration at the NMDA receptor level. In: Ben-Ari Y (ed) Excitatory amino acids and neuronal plasticity. Plenum Press, New York, USA, pp 13–16

    Chapter  Google Scholar 

  • Berger AJ, Isaacson JS (1999) Modulation of motor neuron N-methyl-D-aspartate receptors by the inhibitory neurotransmitter glycine. J Physiol Paris 93:23–27

    Article  CAS  PubMed  Google Scholar 

  • Berger AJ, Dieudonne S, Ascher P (1998) Glycine uptake govems glycine site occupancy at NMDA receptors of excitatory synapses. J Neurophysiol 80:3336–3340

    Article  CAS  PubMed  Google Scholar 

  • Bergeron R, Meyer TM, Coyle JT, Greene RW (1998) Modulation of N-methyl - D- aspartate receptor function by glycine transport. Proc Natl Acad Sci 95:15730–15734

    Article  CAS  PubMed  Google Scholar 

  • Blevins JE, Stanley BG, Reidelberger RD (2002) DMSO as a vehicle for central injections: tests with feeding elicited by norepinephrine injected into the paraventricular nucleus. Pharmacol Biochem Behav 71:277–282

    Article  CAS  PubMed  Google Scholar 

  • Bungo T, Kawamura K, Izumi T, Dodo KI, Ueda H (2004) Feeding responses to l-, d- and j-opioid receptor agonists in the meat-type chick. Pharmacol Biochem Behav 78:707–710

    Article  CAS  PubMed  Google Scholar 

  • Bungo T, Kawamura K, Izumi T, Ueda H (2005) Effects of various l-, d- and j-opioid ligands on food intake in the meat type chick. Physiol Behav 85:519–523

    Article  CAS  PubMed  Google Scholar 

  • Cadet JL, Jayanthi S, McCoy MT, Beauvais G, Cai NS (2010) Dopamine D1 receptors, regulation of gene expression in the brain, and neurodegeneration. CNS Neurol Disord Drug Targets 9:526–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cawley EI, Park S, Aanhetrot M, Rot MAH, Sancton K, Benkelfat C, Young SN, Boivin DB, Leyton M (2013) Dopamine and light: dissecting effects on mood and motivational states in women with subsyndromal seasonal affective disorder. J Psychiatry Neurosci 38:388–397

    Article  PubMed  PubMed Central  Google Scholar 

  • Chattipakorn SC, McMahon LL (2002) Pharmacological characterization of glycine-gated chloride currents recorded in rat hippocampal slices. J Neurophysiol 87(3):1515–1525

    Article  CAS  PubMed  Google Scholar 

  • Chen RZ, Frassetto A, Fong TM (2006) Effects of the CB1 cannabinoid receptor inverse agonist AM251 on food intake and body weight in mice lacking l-opioid receptors. Brain Res 1108:176–178

    Article  CAS  PubMed  Google Scholar 

  • Corzo A, Kidd MT, Burnham DJ, Kerr BJ (2004) Dietary glycine needs of broiler chicks. Poult Sci 83(8):1382–1384

    Article  CAS  PubMed  Google Scholar 

  • Davis JL, Masuoka DT, Gerbrandt LK, Cherkin A (1979) Autoradiographic distribution of L-proline in chicks after intracerebral injection. Physiol Behav 22:693–695

    Article  CAS  PubMed  Google Scholar 

  • De Bartolomeis A, Manchia M, Marmo F, Vellucci L, Iasevoli F, Barone A (2020) Glycine signaling in the framework of dopamine-glutamate interaction and postsynaptic density. Implications for Treatment-Resistant Schizophrenia. Front Psychiatry 14(11):369

    Article  Google Scholar 

  • Denbow DM (1998) Peripheral and central control of food intake. Poult Sci 68(7):938–947

    Article  Google Scholar 

  • Denbow DM, Vankrey HP, Lacy MP, Dietrick TJ (1983) Feeding, drinking and temperature of leghorn chickens: effects of icv injections of biogenic amine. Physiol Behav 31:85–90

    Article  CAS  PubMed  Google Scholar 

  • Dennis RL, Cheng HW (2011) The dopaminergic system and aggression in laying hens. Poult Sci 90(11):2440–2448

    Article  CAS  PubMed  Google Scholar 

  • Destreel G, Seutin V, Engel D (2019) Subsaturation of the N-methyl-D-aspartate receptor glycine site allows the regulation of bursting activity in juvenile rat nigral dopamine neurons. Eur J Neurosci 50(9):3454–3471

    Article  PubMed  Google Scholar 

  • Emadi L, Jonaidi H, Hosseini Amir Abad E (2011) The role of central CB2 cannabinoid receptors on food intake in neonatal chickens. J Comp Physiol A 197:1143–1147

    Article  CAS  Google Scholar 

  • Ericson M, Molander A, Stomberg R, Soderpalm B (2006) Taurine elevates dopamine levels in the rat nucleus accumbens; antagonism by strychnine. Eur J Neurosci 23:3225–3229

    Article  PubMed  Google Scholar 

  • Ericson M, Clarke RB, Chau P, Adermark L, Söderpalm B (2009) β-Alanine elevates dopamine levels in the rat nucleus accumbens: antagonism by strychnine. Amino Acids 38:1051–1055

    Article  PubMed  Google Scholar 

  • Furuse M (2002) Central regulation of food intake in the neonatal chick. Anim Sci J 73:83–94

    Article  CAS  Google Scholar 

  • Furuse M, Ando R, Bungo T, Shimojo M, Masuda M (1999) Intracerebroventricular injection of orexins does not stimulate food intake in neonatal chicks. Br Poult Sci 40:698–700

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Yamane H, Tomonaga S, Tsuneyoshi Y, Denbow DM (2007) Neuropeptidergic regulation of food intake in the neonatal chick: a review. J Poult Sci 44:349–356

    Article  CAS  Google Scholar 

  • Gielen M, Thomas P, Smart TG (2015) The desensitization gate of inhibitory Cysloop receptors. Nat Commun 6:6829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassanpour S (2015) Role of cannabinoidergic system on food intake in neonatal layer-type chicken. Vet Res Commun 39:151–157

    Article  PubMed  Google Scholar 

  • Hassanpour S, Zendehdel M, Babapour V, Charkhkar S (2015) Endocannabinoid and nitric oxide interaction mediates food intake in neonatal chicken. Br Poult Sci 56(4):443–451

    Article  CAS  PubMed  Google Scholar 

  • Hnasko TS, Szczypka MS, Alaynick WA, During MJ, Palmiter RD (2004) A role for dopamine in feeding responses produced by orexigenic agents. Brain Res 1023:309–318

    Article  CAS  PubMed  Google Scholar 

  • Hommel JD, Trinko R, Sears RM, Georgescu D, Liu ZW, Gao XB, Thurmon JJ, Marinelli M, DiLeone RJ (2006) Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51:801–810

    Article  CAS  PubMed  Google Scholar 

  • Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56(1):27–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonaidi H, Noori Z (2012) Neuropeptide Y-induced feeding is dependent on GABAA receptors in neonatal chicks. J Comp Physiol A 198:827–832

    Article  CAS  Google Scholar 

  • Jonsson S, Kerekes N, Hyytiä P, Ericson M, Söderpalm B (2009) Glycine receptor expression in the forebrain of male AA/ANA rats. Brain Res 1305:27–36

    Article  Google Scholar 

  • Kamerman P, Mitchell D, Laburn H (2002) Circadian variation in the effects of nitric oxide synthase inhibitors on body temperature, feeding and activity in rats. Eur J Appl Physiol 443:609–616

    CAS  Google Scholar 

  • Khodadadi M, Zendehdel M, Baghbanzadeh A, Babapour V (2017) Consequence of dopamine D2 receptor blockade on the hyperphagic effect induced by cannabinoid CB1 and CB2 receptors in layers. Br Poult Sci 58(5):585–593

    Article  CAS  PubMed  Google Scholar 

  • Kuenzel WJ, Beck MM, Teruyama R (2000) Neural sites and pathways regulating food intake in birds: a comparative analysis to mammalian systems. J Exp Zool 283:384–394

    Google Scholar 

  • Kuo D (2002) Co-administration of dopamine D1 and D2 agonists additively decreases daily food intake, body weight and hypothalamic neuropeptide Y level in rats. J Biomed Sci 9(2):126–132

    Article  CAS  PubMed  Google Scholar 

  • Ladepeche L, Yang L, Bouchet D, Groc L (2013) Regulation of dopamine D1 receptor dynamics within the postsynaptic density of hippocampal glutamate synapses. PLoS ONE 8(9):e74512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leinninger GM, Jo YH, Leshan RL, Louis GW, Yang H, Barrera JG, Wilson H, Opland DM, Faouzi MA, Gong Y, Jones JC, Rhodes CJ, Chua SJR, Diano S, Horvath TL, Seeley RJ, Becker JB, Münzberg H, Myers MGJR (2009) Leptin acts via leptin receptor- express in lateral hypothalamic neurons to modulate the mesolimbic dopamine system and suppress feeding. Cell Metab 10:89–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levey AI, Hersch SM, Rye DB, Sunahara RK, Niznik HB, Kitt CA, Price DL, Maggio R, Brann MR, Ciliax BJ (1993) Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Natl Acad Sci USA 90:8861–8865

    Article  CAS  PubMed  Google Scholar 

  • L’hirondel M, Cheramy A, Godeheu G, Artaud F, Saiardi A, Borrelli E, Glowinski J (1998) Lack of autoreceptor-mediated inhibitory control of dopamine release in striatal synaptosomes of D2 receptor-deficient mice. Brain Res 792:253–262

    Article  PubMed  Google Scholar 

  • Lidö HH, Stomberg R, Fagerberg A, Ericson M, Söderpalm B (2009) The glycine reuptake inhibitor org 25935 interacts with basal and ethanol-induced dopamine release in rat nucleus accumbens. Alcohol Clin Exp Res 33:1151–1157

    Article  PubMed  Google Scholar 

  • Lidö HH, Ericson M, Marston H, Söderpalm B (2011) A role for accumbal glycine receptors in modulation of dopamine release by the glycine transporter-1 inhibitor Org25935. Front Psychiatry 2:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Ye JH (2011) Glycine-activated chloride currents of neurons freshly isolated from the prefrontal cortex of young rats. Brain Res 1393:17–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahzouni M, Zendehdel M, Babapour V, Charckkar S (2016) Methylamine induced hypophagia is mediated via dopamine via d1 and d2 receptors in neonatal meat chick. Vet Res Commun 40:21–27

    Article  PubMed  Google Scholar 

  • McCool BA, Botting SK (2000) Characterization of strychnine-sensitive glycine receptors in acutely isolated adult rat basolateral amygdala neurons. Brain Res 859(2):341–351

    Article  CAS  PubMed  Google Scholar 

  • Mercuri NB, Saiardi A, Bonci A, Picetti R, Calabresi P, Bernardi G, Borrelli E (1997) Loss of autoreceptor function in dopaminergic neurons from dopamine D2 receptor deficient mice. Neuroscience 79:323–327

    CAS  PubMed  Google Scholar 

  • Molander A, Söderpalm B (2005) Accumbal strychnine-sensitive glycine receptors: an access point for ethanol to the brain reward system. Alcohol Clin Exp Res 29:27–37

    Article  CAS  PubMed  Google Scholar 

  • Mortezaei SS, Zendehdel M, Babapour V, Hasani K (2013) The role of glutamatergic and GABAergic systems on serotonin- induced feeding behavior in chicken. Vet Res Commun 37:303–310

    Article  PubMed  Google Scholar 

  • Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW (2006) Central nervous system control of food intake and body weight. Nature 443:289–295

    Article  CAS  PubMed  Google Scholar 

  • Mulder AH, Snyder SH (1974) Potassium induced release of amino acids from cerebral cortex and spinal cord slices of the rat. Brain Res 76:297–308

    Article  CAS  PubMed  Google Scholar 

  • Neve KA, Seamans JK, Trantham-Davidson H (2004) Dopamine receptor signaling. J Rec Sign Transd Res 24:165–205

    CAS  Google Scholar 

  • Olanrewaju HA, Thaxton JP, Dozier WA, Purswell J, Roush WB, Branton SL (2006) A review of lighting programs for broiler production. Int J Pol Sci 5(4):301–308

    Google Scholar 

  • Opland DM, Leinninger GM, Myers MG (2010) Modulation of the mesolimbic dopamine system by leptin. Brain Res 1350:65–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owens DF, Boyce LH, Davis MBE, Kriegstein AR (1996) Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J Neurosci 16:6414–6423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pycock C, Smith L (1983) Interactions of dopamine and the release of [3H] taurine and [3H]-glycine from the isolated retina of the rat. Br J Pharmacol 78(2):395–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi W, Ding D, Salvi RJ (2008) Cytotoxic effects of dimethyl sulphoxide (DMSO) on cochlear organotypic cultures. Hear Res 236:52–60

    Article  CAS  PubMed  Google Scholar 

  • Rada P, Bocarsly ME, Barson JR, Hoebel BG, Leibowitz SF (2010) Reduced accumbens dopamine in sprague- dawley rats prone to overeating fat-rich diet. Physiol Behav 101:394–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rampon C, Luppi PH, Fort P, Peyron C, Jouvet M (1996) Distribution of glycineimmunoreactive cell bodies and fibers in the rat brain. Neuroscience 75(3):737–755

    Article  CAS  PubMed  Google Scholar 

  • Reidelberger R, Haver A, Chelikani P, Keire DA, ReeveJr JR (2011) Effects of glycine-extended and serine13-phosphorylated forms of peptide YY on food intake in rats. Peptides 32:770–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito ES, Kaiya H, Tachibana T, Tomonaga S, Denbow DM, Kangawa K, Furuse M (2005) Inhibitory effect of ghrelin on food intake is mediated by the corticotropin-releasing factor system in neonatal chicks. Regul Pept 125:201–208

    Article  CAS  PubMed  Google Scholar 

  • Sartsoongnoen N, Kosonsiriluk S, Prakobsaeng N, Songserm T, Rozenboim I, Halawani ME, Chaiseha Y (2008) The dopaminergic system in the brain of the native Thai chicken, Gallus domesticus: localization and differential expression across the reproductive cycle. Gen Comp Endocrinol 159:107–115

    Article  CAS  PubMed  Google Scholar 

  • Saul’skaya N, Mikhailova MO, Gorbachevskaya AI (2001) Dopamine-dependent inhibition of glycine release in the nucleus accumbens of the rat brain during food consumption. Neurosci Behav Physiol 31(3):317–321

    Article  CAS  PubMed  Google Scholar 

  • Seif T, Makriyannis A, Kunos G, Bonci A, Hopf FW (2011) The endocannabinoid 2-arachidonoylglycerol mediates d1 and d2 receptor cooperative enhancement of rat nucleus accumbens core neuron firing. Neuroscience 193:21–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sesack SR, Aoki C, Pickel VM (1994) Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets. J Neurosci 14:88–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shohreh B, Baghbanzadeh A, Zendehdel M (2014) Role of glycine and NMDA glutamate receptor on central regulation of food intake in broilers. J Vet Res 69(2):197–201

    Google Scholar 

  • Sorrels TL, Bostock E (1992) Induction of feeding by 7-chlorokynurenic acid, a strychnine-insensitive glycine binding site antagonist. Brain Res 572(1–2):265–268

    Article  CAS  PubMed  Google Scholar 

  • Spanagel R (2009) Alcoholism: a systems approach from molecular physiology to addictive behavior. Physiol Rev 89:649–705

    Article  CAS  PubMed  Google Scholar 

  • Taati M, Nayebzadeh H, Khosravania H, Cheraghi J (2010) The role of the histaminergic system on the inhibitory effect of ghrelin on food intake in broiler chickens. IJVR 11(1):38–45

    Google Scholar 

  • Van Tienhoven A, Juhasz LP (1962) The chicken telencephalon, diencephalon, and mesencephalon in sterotaxic coordinates. J Comp Neurol 118:185–197

    Article  Google Scholar 

  • Vento PJ, Swartz ME, Martin LB, Daniels D (2008) Food intake in laboratory rats provided standard and fenbendazole-supplemented diets. J Am Assoc Lab Anim Sci 47(6):46–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Volkow ND, Wang GJ, Baler RD (2011) Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci 15(1):37–46

    Article  CAS  PubMed  Google Scholar 

  • Wakita M, Kotani N, Akaike N (2016) Effects of propofol on glycinergic neurotransmission in a single spinal nerve synapse preparation. Brain Res 1631:147–156

    Article  CAS  PubMed  Google Scholar 

  • Wynne K, Stanley S, McGown B, Bloom S (2005) Appetite control. J Endocrinol 184:291–318

    Article  CAS  PubMed  Google Scholar 

  • Xu HP, Shen X, Zhou M, Luo CL, Kang L, Liang Y (2010) The genetic effects of the dopamine D1 receptor gene on chicken egg production and broodiness traits. BMC Genet 11:17–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye JH, Ren J, Liu PL, McArdle JJ (1998) Glycine-activated chloride currents of neurons freshly isolated from the ventral tegmental area of rats. Brain Res 796(1–2):53–62

    Article  CAS  PubMed  Google Scholar 

  • Zendehdel M, Hassanpour S (2014) Central regulation of food intake in mammals and birds: a review. Neurotransmitter 1:1–7

    Google Scholar 

  • Zendehdel M, Mokhtarpouriani K, Hamidi F, Montazeri R (2012) Intracerebroventricular injection of ghrelin produces hypophagia through central serotonergic mechanisms in chicken. Vet Res Commun 37(1):37–41

    Article  PubMed  Google Scholar 

  • Zendehdel M, Babapour V, Baghbanzadeh A, Pourrahimi M, Hassanpour S (2013) The effect of sertonergic system on nociception/orphanin FQ induced food intake in chicken. J Physiol Sci 63:271–277

    Article  CAS  PubMed  Google Scholar 

  • Zendehdel M, Hasani K, Babapour V, Mortezaei SS, Khoshbakht Y, Hassanpour S (2014) Dopamine-induced hypophagia is mediated by D1 and 5HT-2c receptors in chicken. Vet Res Commun 38:11–19

    Article  PubMed  Google Scholar 

  • Zendehdel M, Hassanpour S, Babapour V, Charkhkar S, Mahdavi M (2015) Interaction between endocannabinoid and opioidergic systems regulates food intake in neonatal chicken. Int J Pept Res Ther 21:289–297

    Article  CAS  Google Scholar 

  • Zendehdel M, Ghashghayi E, Hassanpour S, Baghbanzadeh A, Jonaidi H (2016) Interaction between opioidergic and dopaminergic systems on food intake in neonatal layer type chicken. Int J Pept Res Ther 22:83–92

    Article  CAS  Google Scholar 

  • Zheng H, Patterson LM, Berthoud HR (2007) Orexin signaling in the ventral tegmental area is required for high-fat appetite induced by opioid stimulation of the nucleus accumbens. J Neurosci Res 27:11075–11082

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Zendehdel.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Ethical approval

All experiments were performed according to the Guide for the Care and Use of Laboratory Animals and approved by the Institutional Animal Ethics Committee.

Informed consent

This manuscript does not contain any studies with human subjects conducted by any of the authors.

Additional information

Handling editor: F. J. Nyberg.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, J., Zendehdel, M. & Khodadadi, M. Mediatory role of the dopaminergic system through D1 receptor on glycine-induced hypophagia in neonatal broiler-type chickens. Amino Acids 53, 461–470 (2021). https://doi.org/10.1007/s00726-021-02963-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-021-02963-3

Keywords

Navigation