Skip to main content

Advertisement

Log in

Design of substrates and inhibitors of G protein-coupled receptor kinase 2 (GRK2) based on its phosphorylation reaction

  • Minireview Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The G protein-coupled receptor kinase (GRK) family consists of seven cytosolic serine/threonine (Ser/Thr) protein kinases, and among them, GRK2 is involved in the regulation of an enormous range of both G protein-coupled receptors (GPCRs) and non-GPCR substrates that participate in or regulate many critical cellular processes. GRK2 dysfunction is associated with multiple diseases, including cancers, brain diseases, cardiovascular and metabolic diseases, and therefore GRK2-specific substrates/inhibitors are needed not only for studies of GRK2-mediated cellular functions but also for GRK2-targeted drug development. Here, we first review the structure, regulation and functions of GRK2, and its synthetic substrates and inhibitors. We then highlight recent work on synthetic peptide substrates/inhibitors as promising tools for fundamental studies of the physiological functions of GRK2, and as candidates for applications in clinical diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asai D, Tsuchiya A, Kang JH, Kawamura K, Oishi J, Mori T, Niidome T, Shoji Y, Nakashima H, Katayama Y (2009) Inflammatory cell-specific gene regulation system responding to Ik-B kinase beta activation. J Gene Med 11:624–632

    CAS  PubMed  Google Scholar 

  • Asai D, Toita R, Murata M, Katayama Y, Nakashima H, Kang JH (2014) Peptide substrates for G protein-coupled receptor kinase 2. FEBS Lett 588:2129–2132

    CAS  PubMed  Google Scholar 

  • Asai D, Murata M, Toita R, Kawano T, Nakashima H, Kang JH (2016) Role of amino acid residues surrounding the phosphorylation site in peptide substrates of G protein-coupled receptor kinase 2 (GRK2). Amino Acids 48:2875–2880

    CAS  PubMed  Google Scholar 

  • Asai D, Murata M, Toita R, Kawano T, Nakashima H, Kang JH (2019) A high-affinity peptide substrate for G protein-coupled receptor kinase 2 (GRK2). Amino Acids 51:973–976

    CAS  PubMed  Google Scholar 

  • Bauer R, Enns H, Jungmann A, Leuchs B, Volz C, Schinkel S, Koch WJ, Raake PW, Most P, Katus HA, Müller OJ (2019) Various effects of AAV9-mediated βARKct gene therapy on the heart in dystrophin-deficient (mdx) mice and δ-sarcoglycan-deficient (Sgcd−/−) mice. Neuromuscul Disord 29:231–241

    PubMed  Google Scholar 

  • Benovic JL, Onorato J, Lohse MJ, Dohlman HG, Staniszewski C, Caron MG, Lefkowitz RJ (1990) Synthetic peptides of the hamster β2-adrenoceptor as substrates and inhibitors of the beta-adrenoceptor kinase. Br J Clin Pharmacol 30(Suppl 1):3S–12S

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouley R, Waldschmidt HV, Cato MC, Cannavo A, Song J, Cheung JY, Yao XQ, Koch WJ, Larsen SD, Tesmer JJG (2017) Structural determinants influencing the potency and selectivity of indazole-paroxetine hybrid G protein-coupled receptor kinase 2 inhibitors. Mol Pharmacol 92:707–717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brackley AD, Sarrami S, Gomez R, Guerrero KA, Jeske NA (2017) Identification of a signaling cascade that maintains constitutive δ-opioid receptor incompetence in peripheral sensory neurons. J Biol Chem 292:8762–8772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Long H, Wu Z, Jiang X, Ma L (2008) EGF transregulates opioid receptors through EGFR-mediated GRK2 phosphorylation and activation. Mol Biol Cell 19:2973–2983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Sato PY, Chuprun JK, Peroutka RJ, Otis NJ, Ibetti J, Pan S, Sheu SS, Gao E, Koch WJ (2013) Prodeath signaling of G protein-coupled receptor kinase 2 in cardiac myocytes after ischemic stress occurs via extracellular signal-regulated kinase-dependent heat shock protein 90-mediated mitochondrial targeting. Circ Res 112:1121–1134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ciccarelli M, Chuprun JK, Rengo G, Gao E, Wei Z, Peroutka RJ, Gold JI, Gumpert A, Chen M, Otis NJ, Dorn GW 2nd, Trimarco B, Iaccarino G, Koch WJ (2011) G protein-coupled receptor kinase 2 activity impairs cardiac glucose uptake and promotes insulin resistance after myocardial ischemia. Circulation 123:1953–1962

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cong M, Perry SJ, Lin FT, Fraser ID, Hu LA, Chen W, Pitcher JA, Scott JD, Lefkowitz RJ (2001) Regulation of membrane targeting of the G protein-coupled receptor kinase 2 by protein kinase A and its anchoring protein AKAP79. J Biol Chem 276:15192–15199

    CAS  PubMed  Google Scholar 

  • DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK (2007) β-arrestins and cell signaling. Annu Rev Physiol 69:483–510

    CAS  PubMed  Google Scholar 

  • Dissanayake S, Denny WA, Gamage S, Sarojini V (2017) Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides. J Control Release 250:62–76

    CAS  PubMed  Google Scholar 

  • Gan XQ, Wang JY, Yang QH, Li Z, Liu F, Pei G, Li L (2000) Interaction between the conserved region in the C-terminal domain of GRK2 and rhodopsin is necessary for GRK2 to catalyze receptor phosphorylation. J Biol Chem 275:8469–8474

    CAS  PubMed  Google Scholar 

  • Gan X, Ma Z, Deng N, Wang J, Ding J, Li L (2004) Involvement of the C-terminal proline-rich motif of G protein-coupled receptor kinases in recognition of activated rhodopsin. J Biol Chem 279:49741–49746

    CAS  PubMed  Google Scholar 

  • Gupta D, Molina EJ, Palma J, Gaughan JP, Long W, Macha M (2008) Adenoviral β-adrenergic receptor kinase inhibitor gene transfer improves exercise capacity, cardiac contractility, and systemic inflammation in a model of pressure overload hypertrophy. Cardiovasc Drugs Ther 22:373–381

    CAS  PubMed  Google Scholar 

  • Gurevich VV, Gurevich EV (2019) GPCR Signaling regulation: the role of GRKs and arrestins. Front Pharmacol 10:125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gurevich EV, Tesmer JJ, Mushegian A, Gurevich VV (2012) G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther 133:40–69

    CAS  PubMed  Google Scholar 

  • Homan KT, Wu E, Wilson MW, Singh P, Larsen SD, Tesmer JJ (2014) Structural and functional analysis of G protein-coupled receptor kinase inhibition by paroxetine and a rationally designed analog. Mol Pharmacol 85:237–248

    PubMed  PubMed Central  Google Scholar 

  • Homan KT, Waldschmidt HV, Glukhova A, Cannavo A, Song J, Cheung JY, Koch WJ, Larsen SD, Tesmer JJ (2015) Crystal structure of G protein-coupled receptor kinase 5 in complex with a rationally designed inhibitor. J Biol Chem 290:20649–20659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang ZM, Gao E, Fonseca FV, Hayashi H, Shang X, Hoffman NE, Chuprun JK, Tian X, Tilley DG, Madesh M, Lefer DJ, Stamler JS, Koch WJ (2013) Convergence of G protein-coupled receptor and S-nitrosylation signaling determines the outcome to cardiac ischemic injury. Sci Signal 6:ra95

    PubMed  PubMed Central  Google Scholar 

  • Kang JH, Asai D, Kim JH, Mori T, Toita R, Tomiyama T, Asami Y, Oishi J, Sato YT, Niidome T, Jun B, Nakashima H, Katayama Y (2008) Design of polymeric carriers for cancer-specific gene targeting: utilization of abnormal protein kinase Cα activation in cancer cells. J Am Chem Soc 130:14906–14907

    CAS  PubMed  Google Scholar 

  • Kang JH, Asami Y, Murata M, Kitazaki H, Sadanaga N, Tokunaga E, Shiotani S, Okada S, Maehara Y, Niidome T, Hashizume M, Mori T, Katayama Y (2010) Gold nanoparticles-based colorimetric assay for cancer diagnosis. Biosens Bioelectron 25:1869–1874

    CAS  PubMed  Google Scholar 

  • Kang JH, Asai D, Tsuchiya A, Mori T, Niidome T, Katayama Y (2011) Peptide substrates for Rho-associated kinase 2 (Rho-kinase 2/ROCK2). PLoS ONE 6:e22699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang JH, Toita R, Kim CW, Katayama Y (2012) Protein kinase C (PKC) isozyme-specific substrates and their design. Biotechnol Adv 30:1662–1672

    CAS  PubMed  Google Scholar 

  • Kang JH, Asai D, Toita R, Kawano T, Murata M (2015) Monitoring of phosphorylated peptides by radioactive assay and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. Amino Acids 47:2377–2383

    CAS  PubMed  Google Scholar 

  • Kelly MI, Bechtel TJ, Reddy DR, Hankore ED, Beck JR, Stains CI (2015) A real-time, fluorescence-based assay for Rho-associated protein kinase activity. Anal Chim Acta 891:284–290

    CAS  PubMed  Google Scholar 

  • Kim JH, Lee S, Park K, Nam HY, Jang SY, Youn I, Kim K, Jeon H, Park RW, Kim IS, Choi K, Kwon IC (2007) Protein-phosphorylation-responsive polymeric nanoparticles for imaging protein kinase activities in single living cells. Angew Chem Int Edn 46:5779–5782

    CAS  Google Scholar 

  • Koga H, Toita R, Mori T, Tomiyama T, Kang JH, Niidome T, Katayama Y (2011) Fluorescent nanoparticles consisting of lipopeptides and fluorescein-modified polyanions for monitoring of protein kinase activity. Biocong Chem 22:1526–1534

    CAS  Google Scholar 

  • Krasel C, Dammeier S, Winstel R, Brockmann J, Mischak H, Lohse MJ (2001) Phosphorylation of GRK2 by protein kinase C abolishes its inhibition by calmodulin. J Biol Chem 276:1911–1915

    CAS  PubMed  Google Scholar 

  • Lafarga V, Aymerich I, Tapia O, Mayor F Jr, Penela P (2012) A novel GRK2/HDAC6 interaction modulates cell spreading and motility. EMBO J 31:856–869

    CAS  PubMed  Google Scholar 

  • Lee ACL, Harris JL, Khanna KK, Hong JH (2019) A comprehensive review on current advances in peptide drug development and design. Int J Mol Sci 20:2383

    PubMed Central  Google Scholar 

  • Luo Z, Akita GY, Date T, Treleaven C, Vincent KA, Woodcock D, Cheng SH, Gregory RJ, Jiang C (2005) Adenovirus-mediated expression of β-adrenergic receptor kinase C-terminus reduces intimal hyperplasia and luminal stenosis of arteriovenous polytetrafluoroethylene grafts in pigs. Circulation 111:1679–1684

    CAS  PubMed  Google Scholar 

  • Mariggiò S, García-Hoz C, Sarnago S, De Blasi A, Mayor F Jr, Ribas C (2006) Tyrosine phosphorylation of G-protein-coupled-receptor kinase 2 (GRK2) by c-Src modulates its interaction with Gαq. Cell Signal 18:2004–2012

    PubMed  Google Scholar 

  • Miller CJ, Turk BE (2018) Homing in: mechanisms of substrate targeting by protein kinases. Trends Biochem Sci 43:380–394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murga C, Arcones AC, Cruces-Sande M, Briones AM, Salaices M, Mayor F Jr (2019) G protein-coupled receptor kinase 2 (GRK2) as a potential therapeutic target in cardiovascular and metabolic diseases. Front Pharmacol 10:112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murthy KS, Mahavadi S, Huang J, Zhou H, Sriwai W (2008) Phosphorylation of GRK2 by PKA augments GRK2-mediated phosphorylation, internalization, and desensitization of VPAC2 receptors in smooth muscle. Am J Physiol Cell Physiol 294:C477–C487

    CAS  PubMed  Google Scholar 

  • Nogués L, Reglero C, Rivas V, Neves M, Penela P, Mayor F Jr (2017) G-protein-coupled receptor kinase 2 as a potential modulator of the hallmarks of cancer. Mol Pharmacol 91:220–228

    PubMed  Google Scholar 

  • Okawa T, Aramaki Y, Yamamoto M, Kobayashi T, Fukumoto S, Toyoda Y, Henta T, Hata A, Ikeda S, Kaneko M, Hoffβman ID, Sang BC, Zou H, Kawamoto T (2017) Design, synthesis, and evaluation of the highly selective and potent G-protein-coupled receptor kinase 2 (GRK2) Inhibitor for the potential treatment of heart failure. J Med Chem 60:6942–6990

    CAS  PubMed  Google Scholar 

  • Onorato JJ, Palczewski K, Regan JW, Caron MG, Lefkowitz RJ, Benovic JL (1991) Role of acidic amino acids in peptide substrates of the β-adrenergic receptor kinase and rhodopsin kinase. Biochemistry 30:5118–5125

    CAS  PubMed  Google Scholar 

  • Onorato JJ, Gillis ME, Liu Y, Benovic JL, Ruoho AE (1995) The β-adrenergic receptor kinase (GRK2) is regulated by phospholipids. J Biol Chem 270:21346–21353

    CAS  PubMed  Google Scholar 

  • Penela P, Murga C, Ribas C, Lafarga V, Mayor F Jr (2010) G protein-coupled receptor kinase 2 (GRK2) modulation and cell cycle progression. Br J Pharmacol 160:821–832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Penela P, Ribas C, Sánchez-Madrid F, Mayor F Jr (2019) G protein-coupled receptor kinase 2 (GRK2) as a multifunctional signaling hub. Cell Mol Life Sci 76:4423–4446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pfleger J, Gresham K, Koch WJ (2019) G protein-coupled receptor kinases as therapeutic targets in the heart. Nat Rev Cardiol 16:612–622

    PubMed  Google Scholar 

  • Pitcher JA, Hall RA, Daaka Y, Zhang J, Ferguson SS, Hester S, Miller S, Caron MG, Lefkowitz RJ, Barak LS (1998) The G protein-coupled receptor kinase 2 is a microtubule-associated protein kinase that phosphorylates tubulin. J Biol Chem 273:12316–12324

    CAS  PubMed  Google Scholar 

  • Pitcher JA, Tesmer JJ, Freeman JL, Capel WD, Stone WC, Lefkowitz RJ (1999) Feedback inhibition of G protein-coupled receptor kinase 2 (GRK2) activity by extracellular signal-regulated kinases. J Biol Chem 274:34531–34534

    CAS  PubMed  Google Scholar 

  • Qin X, Yu C, Wei J, Li L, Zhang C, Wu Q, Liu J, Yao SQ, Huang W (2019) Rational design of nanocarriers for intracellular protein delivery. Adv Mater 31:e1902791

    PubMed  Google Scholar 

  • Raake PW, Schlegel P, Ksienzyk J, Reinkober J, Barthelmes J, Schinkel S, Pleger S, Mier W, Haberkorn U, Koch WJ, Katus HA, Most P, Müller OJ (2013) AAV6.βARKct cardiac gene therapy ameliorates cardiac function and normalizes the catecholaminergic axis in a clinically relevant large animal heart failure model. Eur Heart J 34:1437–1447

    CAS  PubMed  Google Scholar 

  • Rengo G, Lymperopoulos A, Leosco D, Koch WJ (2011) GRK2 as a novel gene therapy target in heart failure. J Mol Cell Cardiol 50:785–792

    CAS  PubMed  Google Scholar 

  • Smith JS, Rajagopal S (2016) The β-Arrestins: multifunctional regulators of G protein-coupled receptors. J Biol Chem 291:8969–8977

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sterne-Marr R, Leahey PA, Bresee JE, Dickson HM, Ho W, Ragusa MJ, Donnelly RM, Amie SM, Krywy JA, Brookins-Danz ED, Orakwue SC, Carr MJ, Yoshino-Koh K, Li Q, Tesmer JJ (2009) GRK2 activation by receptors: role of the kinase large lobe and carboxyl-terminal tail. Biochemistry 48:4285–4293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taguchi K, Sakata K, Ohashi W, Imaizumi T, Imura J, Hattori Y (2014) Tonic inhibition by G protein-coupled receptor kinase 2 of Akt/endothelial nitric-oxide synthase signaling in human vascular endothelial cells under conditions of hyperglycemia with high insulin levels. J Pharmacol Exp Ther 349:199–208

    PubMed  Google Scholar 

  • Taguchi K, Hida M, Hasegawa M, Narimatsu H, Matsumoto T, Kobayashi T (2017) Suppression of GRK2 expression reduces endothelial dysfunction by restoring glucose homeostasis. Sci Rep 7:8436

    PubMed  PubMed Central  Google Scholar 

  • Tesmer JJ, Tesmer VM, Lodowski DT, Steinhagen H, Huber J (2010) Structure of human G protein-coupled receptor kinase 2 in complex with the kinase inhibitor balanol. J Med Chem 53:1867–1870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thal DM, Yeow RY, Schoenau C, Huber J, Tesmer JJ (2011) Molecular mechanism of selectivity among G protein-coupled receptor kinase 2 inhibitors. Mol Pharmacol 80:294–303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thal DM, Homan KT, Chen J, Wu EK, Hinkle PM, Huang ZM, Chuprun JK, Song J, Gao E, Cheung JY, Sklar LA, Koch WJ, Tesmer JJ (2012) Paroxetine is a direct inhibitor of G protein-coupled receptor kinase 2 and increases myocardial contractility. ACS Chem Biol 7:1830–1839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchiya A, Kang JH, Asai D, Mori T, Niidome T, Katayama Y (2011) Transgene regulation system responding to Rho associated coiled-coil kinase (ROCK) activation. J Control Release 155:40–46

    CAS  PubMed  Google Scholar 

  • Van TNN, Morris MC (2013) Fluorescent sensors of protein kinases: from basics to biomedical applications. Prog Mol Biol Transl Sci 113:217–274

    Google Scholar 

  • Waldschmidt HV, Homan KT, Cruz-Rodríguez O, Cato MC, Waninger-Saroni J, Larimore KM, Cannavo A, Song J, Cheung JY, Kirchhoff PD, Koch WJ, Tesmer JJ, Larsen SD (2016) Structure-based design, synthesis, and biological evaluation of highly selective and potent G protein-coupled receptor kinase 2 inhibitors. J Med Chem 59:3793–3807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whalen EJ, Foster MW, Matsumoto A, Ozawa K, Violin JD, Que LG, Nelson CD, Benhar M, Keys JR, Rockman HA, Koch WJ, Daaka Y, Lefkowitz RJ, Stamler JS (2007) Regulation of beta-adrenergic receptor signaling by S-nitrosylation of G-protein-coupled receptor kinase 2. Cell 129:511–522

    CAS  PubMed  Google Scholar 

  • Winstel R, Ihlenfeldt HG, Jung G, Krasel C, Lohse MJ (2005) Peptide inhibitors of G protein-coupled receptor kinases. Biochem Pharmacol 70:1001–1008

    CAS  PubMed  Google Scholar 

  • Zhang D, Wang J, Xu D (2016) Cell-penetrating peptides as noninvasive transmembrane vectors for the development of novel multifunctional drug-delivery systems. J Control Release 229:130–139

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms. Shigemi Terakubo and Ms. Niño Nakajima (St. Marianna University School of Medicine) for technical support. This work was supported by JSPS KAKENHI grant number 17K08254 and AMED under Grant Number JP19hm0102067.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeong-Hun Kang or Daisuke Asai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Research involving human participants and/or animals

This review article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent is not required for this type of study.

Additional information

Handling editor: J. D. Wade.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, JH., Toita, R., Kawano, T. et al. Design of substrates and inhibitors of G protein-coupled receptor kinase 2 (GRK2) based on its phosphorylation reaction. Amino Acids 52, 863–870 (2020). https://doi.org/10.1007/s00726-020-02864-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-020-02864-x

Keywords

Navigation