Branched-chain polyamine stabilizes RNA polymerase at elevated temperatures in hyperthermophiles

Abstract

Branched-chain polyamines (BCPAs) are unique polycations found in (hyper)thermophiles. Thermococcus kodakarensis grows optimally at 85 °C and produces the BCPA N4-bis(aminopropyl)spermidine by sequential addition of decarboxylated S-adenosylmethionine (dcSAM) aminopropyl groups to spermidine (SPD) by BCPA synthase A (BpsA). The T. kodakarensis bpsA deletion mutant (DBP1) did not grow at temperatures at or above 93 °C, and grew at 90 °C only after a long lag period following accumulation of excess cytoplasmic SPD. This suggests that BCPA plays an essential role in cell growth at higher temperatures and raises the possibility that BCPA is involved in controlling gene expression. To examine the effects of BCPA on transcription, the RNA polymerase (RNAP) core fraction was extracted from another bpsA deletion mutant, DBP4 (RNAPDBP4), which carried a His-tagged rpoL, and its enzymatic properties were compared with those of RNAP from wild-type (WT) cells (RNAPWT). LC–MS analysis revealed that nine ribosomal proteins were detected from RNAPWT but only one form RNAPDBP4. These results suggest that BCPA increases the linkage between RNAP and ribosomes to achieve efficient coupling of transcription and translation. Both RNAPs exhibited highest transcription activity in vitro at 80 °C, but the specific activity of RNAPDBP4 was lower than that of RNAPWT. Upon addition of SPD and BCPA, both increased the transcriptional activity of RNAPDBP4; however, elevation by BCPA was achieved at a tenfold lower concentration. Addition of BCPA also protected RNAPDBP4 against thermal inactivation at 90 °C. These results suggest that BCPA increases transcriptional activity in T. kodakarensis by stabilizing the RNAP complex at high temperatures.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

AA:

Amino acids

ASW:

Artificial seawater

BCPA:

Branched-chain polyamine

BpsA:

Branched-chain polyamine synthase A

Ca(OAc)2 :

Calcium acetate

DTT:

Dithiothreitol

EtBr:

Ethidium bromide

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

HPLC:

High-performance liquid chromatography

KOAc:

Potassium acetate

LC–MS:

Liquid chromatography–mass spectrometry

LCPA:

Long-chain polyamine

Mg(OAc)2 :

Magnesium acetate

PA:

Polyamine

PAGE:

Poly-acrylamide gel electrophoresis

RNAP:

RNA polymerase

SDS:

Sodium dodecyl sulfate

SPD:

Spermidine

TBP:

TATA-box binding protein

TCA:

Trichloroacetic acid

TFB:

Transcription factor B

Tris:

Tris(hydroxymethyl)aminomethane

References

  1. Atomi H, Fukui T, Kanai T, Morikawa M, Imanaka T (2004) Description of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp KOD1. Archaea 1:263–267

    CAS  Article  Google Scholar 

  2. Casero RA, Pegg AE (2009) Polyamine catabolism and disease. Biochem J 421:323–338. https://doi.org/10.1042/BJ20090598

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Cohen SS, McCormick FP (1979) Polyamines and virus multiplication. Adv Virus Res 24:331–387

    CAS  Article  Google Scholar 

  4. Demo G, Rasouly A, Vasilyev N, Svetlov V, Loveland AB, Diaz-Avalos R, Grigorieff N, Nudler E, Korostelev AA (2017) Struvture of RNA polymerase bound to ribosomal S30 subunit. Elife 6:e28560. https://doi.org/10.7554/eLIFE.28560

    Article  PubMed  PubMed Central  Google Scholar 

  5. French SL, Santangelo TJ, Beyer AL, Reeve JN (2007) Transcription and translation are coupled in Archaea. Mol Biol Evol 24:893–895. https://doi.org/10.1093/molbev/msm007

    CAS  Article  PubMed  Google Scholar 

  6. Frugier M, Florentz C, Hosseini MW, Lehn JM, Giege R (1994) Synthetic polyamines stimulate in vitro transcription by T7 RNA polymerase. Nucleic Acids Res 22:2784–2790

    CAS  Article  Google Scholar 

  7. Fujiwara S, Aki R, Yoshida M, Higashibata H, Imanaka T, Fukuda W (2008) Expression profiles and physiological roles of two types of molecular chaperonins from the hyperthermophilic archaeon Thermococcus kodakarensis. Appl Environ Microbiol 74:7306–7312. https://doi.org/10.1128/AEM.01245-08

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Fukuda W, Yamori Y, Hamakawa M, Hidese R, Kanesaki Y, Kainuma (Okamoto) A, Kato S, Fujiwara S (2019) Genes regulated by branched-chain polyamine in the hyperthermophilic archaeon Thermococcus kodakarensis. Submitted to Amino Acids

  9. Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S, Imanaka T (2005) Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res 15:352–363

    CAS  Article  Google Scholar 

  10. Gao L, Danno A, Fujii S, Fukuda W, Imanaka T, Fujiwara S (2012) Indole-3-glycerol-phosphate synthase is recognized by a cold-inducible group II chaperonin in Thermococcus kodakarensis. Appl Environ Microbiol 78:3806–3815. https://doi.org/10.1128/AEM.07996-11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45. https://doi.org/10.1007/s00726-007-0501-8

    CAS  Article  PubMed  Google Scholar 

  12. Hamana K, Niitsu M, Samejima K, Matsuzaki S (1991) Polyamine distributions in thermophilic eubacteria belonging to Thermus and Acidothermus. J Biochem 109:444–449

    CAS  Article  Google Scholar 

  13. Hamana K, Niitsu M, Matsuzaki S, Samejima K, Igarashi Y, Kodama T (1992) Novel linear and branched polyamines in the extremely thermophilic eubacteria Thermoleophilum, Bacillus and Hydrogenobacter. Biochem J 284:741–747

    CAS  Article  Google Scholar 

  14. Hamana K, Hamana H, Niitsu M, Samejima K, Sakane T, Yokota A (1993) Tertiary and quaternary branched polyamines distributed in thermophilic Saccharococcus and Bacillus. Microbios 75:23–32

    CAS  PubMed  Google Scholar 

  15. Hamana K, Hamana H, Niitsu M, Samejima K, Sakane T, Yokota A (1994) Occurrence of tertiary and quaternary branched polyamines in thermophilic archaebacteria. Microbios 79:109–119

    CAS  PubMed  Google Scholar 

  16. Hamana K, Niitsu M, Samejima K, Itoh T (2001) Polyamines of the thermophilic eubacteria belonging to the genera Thermosipho, Thermaerobacter and Caldicellulosiruptor. Microbios 104:177–185

    CAS  Google Scholar 

  17. Hamana K, Tanaka T, Hosoya R, Niitsu M, Itoh T (2003) Cellular polyamines of the acidophilic, thermophilic and thermoacidophilic archaebacteria, Acidilobus, Ferroplasma, Pyrobaculum, Pyrococcus, Staphylothermus, Thermococcus, Thermodiscus and Vulcanisaeta. J Gen Appl Microbiol 49:287–293

    CAS  Article  Google Scholar 

  18. Hamana K, Hosoya R, Itoh T (2007) Polyamine analysis of methanogens, thermophiles and extreme halophiles belonging to the domain Archaea. J Jpn Soc Extremophiles 6:25–31. https://doi.org/10.3118/jjse.6.25

    Article  Google Scholar 

  19. Hidese R, Nishikawa R, Gao L, Katano M, Imai T, Kato S, Kanai T, Atomi H, Imanaka T, Fujiwara S (2014) Different roles of two transcription factor B proteins in the hyperthermophilic archaeon Thermococcus kodakarensis. Extremophiles 18:573–588. https://doi.org/10.1007/s00792-014-0638-9

    CAS  Article  Google Scholar 

  20. Hidese R, Tse KM, Kimura S, Mizohata E, Fujita J, Horai Y, Umezawa N, Higuchi T, Niitsu M, Oshima T, Imanaka T, Inoue T, Fujiwara S (2017) Active site geometry of a novel aminopropyltransferase for biosynthesis of hyperthermophile-specific branched-chain polyamine. FEBS J 284:3684–3701. https://doi.org/10.1111/febs.14262

    CAS  Article  Google Scholar 

  21. Hirata A, Kanai T, Santangelo TJ, Tajiri M, Manabe K, Reeve JN, Imanaka T, Murakami KS (2008) Archaeal RNA polymerase subunits E and F are not required for transcription in vitro, but a Thermococcus kodakarensis mutant lacking subunit F is temperature-sensitive. Mol Microbiol 70:623–633. https://doi.org/10.1111/j.1365-2958.2008.06430.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Hosoya R, Hamana K, Niitsu M, Itoh T (2004) Polyamine analysis for chemotaxonomy of thermophilic eubacteria: Polyamine distribution profiles within the orders Aquificales, Thermotogales, Thermodesulfobacteriales, Thermales, Thermoanaerobacteriales, Clostridiales and Bacillales. J Gen Appl Microbiol 50:271–287

    CAS  Article  Google Scholar 

  23. Iwata M, Izawa M, Sasaki N, Nagumo Y, Sasabe H, Hayashizaki Y (2000) T7 RNA polymerase activation and improvement of the transcriptional sequencing by polyamines. Bioorg Med Chem 8:2185–2194. https://doi.org/10.1016/S0968-0896(00)00156-5

    CAS  Article  PubMed  Google Scholar 

  24. Jun SH, Hirata A, Kanai T, Santangelo TJ, Imanaka T, Murakami KS (2014) The X-ray crystal structure of the euryarchaeal RNA polymerase in an open-clamp configuration. Nat Commun 5:5132. https://doi.org/10.1038/ncomms6132

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Kohler R, Mooney RA, Mills DJ, Landick R, Cramer P (2017) Architecture of a transcribing–translating expressome. Science 14(356):194–197. https://doi.org/10.1126/science.aal3059

    CAS  Article  Google Scholar 

  26. Miller-Fleming L, Olin-Sandoval V, Campbell K, Ralser M (2015) Remaining mysteries of molecular biology: the role of polyamines in the cell. J Mol Biol 427:3389–3406. https://doi.org/10.1016/j.jmb.2015.06.020

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Minocha R, Majumdar R, Minocha SC (2014) Polyamines and abiotic stress in plants: a complex relationship. Front Plant Sci 5:175. https://doi.org/10.3389/fpls.2014.00175

    Article  PubMed  PubMed Central  Google Scholar 

  28. Morikawa M, Izawa Y, Rashid N, Hoaki T, Imanaka T (1994) Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp. Appl Environ Microbiol 60:4559–4566

    CAS  Article  Google Scholar 

  29. Morimoto N, Fukuda W, Nakajima N, Masuda T, Terui Y, Kanai T, Oshima T, Imanaka T, Fujiwara S (2010) Dual biosynthesis pathway for longer-chain polyamines in the hyperthermophilic archaeon Thermococcus kodakarensis. J Bacteriol 192:4991–5001. https://doi.org/10.1128/JB.00279-10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Muramatsu A, Shimizu Y, Yoshikawa Y, Fukuda W, Umezawa N, Horai Y, Higuchi T, Fujiwara S, Imanaka T, Yoshikawa K (2016) Naturally occurring branched-chain polyamines induce a crosslinked meshwork structure in a giant DNA. J Chem Phys 145:235103. https://doi.org/10.1063/1.4972066

    CAS  Article  PubMed  Google Scholar 

  31. Nishio T, Yoshikawa Y, Fukuda W, Umezawa N, Higuchi T, Fujiwara S, Imanaka T, Yoshikawa K (2018) Branched-chain polyamine found in hyperthermophiles induces unique temperature-dependent structural changes in genome-size DNA. Chem Phys Chem 19:2299–2304. https://doi.org/10.1002/cphc.201800396

    CAS  Article  PubMed  Google Scholar 

  32. Okada K, Hidese R, Fukuda W, Niitsu M, Takao K, Horai Y, Umezawa N, Higuchi T, Oshima T, Yoshikawa Y, Imanaka T, Fujiwara S (2014) Identification of a novel aminopropyltransferase involved in the synthesis of branched-chain polyamines in hyperthermophiles. J Bacteriol 196:1866–1876. https://doi.org/10.1128/JB.01515-14

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Oshima T (2007) Unique polyamines produced by an extreme thermophile, Thermus thermophilus. Amino Acids 33:367–372. https://doi.org/10.1007/s00726-007-0526-z

    CAS  Article  PubMed  Google Scholar 

  34. Oshima T, Kawahata S (1983) Homocaldpentamine: a new naturally occurring penta-amine. J Biochem 93:1455–1456

    CAS  Article  Google Scholar 

  35. Oshima T, Hamasaki N, Senshu M, Kakinuma K, Kuwajima I (1987) A new naturally occurring polyamine containing a quaternary ammonium nitrogen. J Biol Chem 262:11979–11981

    CAS  PubMed  Google Scholar 

  36. Santangelo TJ, Reeve JN (2006) Archaeal RNA polymerase is sensitive to intrinsic termination directed by transcribed and remote sequences. J Mol Biol 355:196–210. https://doi.org/10.1016/j.jmb.2005.10.062

    CAS  Article  PubMed  Google Scholar 

  37. Santangelo TJ, Cubonova L, James CL, Reeve JN (2007) TFB1 or TFB2 is sufficient for Thermococcus kodakaraensis viability and for basal transcription in vitro. J Mol Biol 367:344–357. https://doi.org/10.1016/j.jmb.2006.12.069

    CAS  Article  PubMed  Google Scholar 

  38. Sato T, Fukui T, Atomi H, Imanaka T (2003) Targeted gene disruption by homologous recombination in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 185:210–220

    CAS  Article  Google Scholar 

  39. Sato T, Fukui T, Atomi H, Imanaka T (2005) Improved and versatile transformation system allowing multiple genetic manipulations of the hyperthermophilic archaeon Thermococcus kodakaraensis. Appl Environ Microbiol 71:3889–3899. https://doi.org/10.1128/AEM.71.7.3889-3899.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Sato T, Atomi H, Imanaka T (2007) Archaeal type III RuBisCOs function in a pathway for AMP metabolism. Science 16:1003–1006. https://doi.org/10.1126/science.1135999

    CAS  Article  Google Scholar 

  41. Tabor CW, Tabor H (1976) 1,4-Diaminobutane (putrescine), spermidine, and spermine. Annu Rev Biochem 45:285–306. https://doi.org/10.1146/annurev.bi.45.070176.001441

    CAS  Article  PubMed  Google Scholar 

  42. Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790. https://doi.org/10.1146/annurev.bi.53.070184.003533

    CAS  Article  PubMed  Google Scholar 

  43. Terui Y, Ohnuma M, Hiraga K, Kawashima E, Oshima T (2005) Stabilization of nucleic acids by unusual polyamines produced by an extreme thermophile, Thermus thermophilus. Biochem J 388:427–433. https://doi.org/10.1042/BJ20041778

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was mainly supported by a grant from the Japan Society for the Promotion of Science (JSPS) KAKENHI (18K19191). Bioinformatic analysis was supported by a Grant for Individual Special Research, provided by Kwansei-Gakuin University.

Funding

This study was supported by a Grant from the Japan Society for the Promotion of Science (JSPS) KAKENHI (18K19191).

Author information

Affiliations

Authors

Contributions

All the authors contributed to study design. YY, MH, RH, MF, and SF performed the experiments. YY, FW, HA, and SF wrote the manuscript. All authors reviewed and approved the final draft.

Corresponding author

Correspondence to Shinsuke Fujiwara.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: E. Agostinelli.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yamori, Y., Hamakawa, M., Hidese, R. et al. Branched-chain polyamine stabilizes RNA polymerase at elevated temperatures in hyperthermophiles. Amino Acids 52, 275–285 (2020). https://doi.org/10.1007/s00726-019-02745-y

Download citation

Keywords

  • Branched-chain polyamine
  • Polyamine
  • RNA polymerase
  • Transcription
  • Archaea
  • Hyperthermophile