Skip to main content

Advertisement

Log in

Altered brain arginine metabolism in a mouse model of tauopathy

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Tauopathies consist of intracellular accumulation of hyperphosphorylated and aggregated microtubule protein tau, which remains a histopathological feature of Alzheimer’s disease (AD) and frontotemporal dementia. l-Arginine is a semi-essential amino acid with a number of bioactive molecules. Its downstream metabolites putrescine, spermidine, and spermine (polyamines) are critically involved in microtubule assembly and stabilization. Recent evidence implicates altered arginine metabolism in the pathogenesis of AD. Using high-performance liquid chromatographic and mass spectrometric assays, the present study systematically determined the tissue concentrations of l-arginine and its nine downstream metabolites in the frontal cortex, hippocampus, parahippocampal region, striatum, thalamus, and cerebellum in male PS19 mice-bearing human tau P301S mutation at 4, 8, and 12–14 months of age. As compared to their wild-type littermates, PS19 mice displayed early and/or prolonged increases in l-ornithine and altered polyamine levels with age. There were also genotype- and age-related changes in l-arginine, l-citrulline, glutamine, glutamate, and γ-aminobutyric acid in a region- and/or chemical-specific manner. The results demonstrate altered brain arginine metabolism in PS19 mice with the most striking changes in l-ornithine, polyamines, and glutamate, indicating a shift of l-arginine metabolism to favor the arginase–polyamine pathway. Given the role of polyamines in maintaining microtubule stability, the functional significance of these changes remains to be explored in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albrecht J, Sidoryk-Węgrzynowicz M, Zielińska M, Aschner M (2010) Roles of glutamine in neurotransmission. Neuron Glia Biol 6:263–276

    Article  PubMed  Google Scholar 

  • Bae DH, Lane DJR, Jansson PJ, Richardson DR (2018) The old and new biochemistry of polyamines. Biochim Biophys Acta 1862:2053–2068

    Article  CAS  Google Scholar 

  • Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98:641–653

    Article  CAS  PubMed  Google Scholar 

  • Bensemain F, Hot D, Ferreira S, Dumont J, Bombois S, Maurage CA, Huot L, Hermant X, Levillain E, Hubans C, Hansmannel F, Chapuis J, Hauw JJ, Schraen S, Lemoine Y, Buee L, Berr C, Mann D, Pasquier F, Amouyel P, Lambert JC (2009) Evidence for induction of the ornithine transcarbamylase expression in Alzheimer’s disease. Mol Psychiatry 14:106–116

    Article  CAS  PubMed  Google Scholar 

  • Bergin DH, Jing Y, Mockett BG, Zhang H, Abraham WC, Liu P (2018) Altered plasma arginine metabolome precedes behavioural and brain arginine metabolomic profile changes in the APPswe/PS1ΔE9 mouse model of Alzheimer's disease. Transl Psychiatry 8:108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burwell RD (2001) Borders and cytoarchitecture of the perirhinal and postrhinal cortices in the rat. J Comp Neurol 437:17–41

    Article  CAS  PubMed  Google Scholar 

  • Cairns NJ, Bigio EH, Mackenzie IR, Neumann M, Lee VM, Hatanpaa KJ, White CL 3rd, Schneider JA, Grinberg LT, Halliday G, Duyckaerts C, Lowe JS, Holm IE, Tolnay M, Okamoto K, Yokoo H, Murayama S, Woulfe J, Munoz DG, Dickson DW, Ince PG, Trojanowski JQ, Mann DM (2007) Consortium for frontotemporal lobar degeneration. Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol 114:5–22

    Article  PubMed  PubMed Central  Google Scholar 

  • Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8:766–775

    Article  CAS  PubMed  Google Scholar 

  • Castellani RJ, Rolston RK, Smith MA (2010) Alzheimer disease. Dis Mon 56:484–546

    Article  PubMed  PubMed Central  Google Scholar 

  • Cicolini J, Jing Y, Waldvogel HJ, Faull RLM, Liu P (2016) Urea cycle enzymes and peptidylarginine deiminase in Alzheimer’s superior frontal gyrus. Alzheimers Dement 12:P460

    Article  Google Scholar 

  • Crescenzi R, Debrosse C, Nanga RPR, Reddy S, Haris M, Hariharan H, Iba M, Lee VM, Detre JA, Borthakur A (2014) In vivo measurement of glutamate loss is associated with synapse loss in a mouse model of tauopathy. Neuroimage 101:185–192

    Article  CAS  PubMed  Google Scholar 

  • Esplugues JV (2002) NO as a signalling molecule in the nervous system. Br J Pharmacol 135:1079–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felipo V, Butterworth RF (2002) Neurobiology of ammonia. Prog Neurobiol 67:259–279

    Article  CAS  PubMed  Google Scholar 

  • Fisman M, Gordon B, Feleki V, Helmes E, Appell J, Rabheru K (1985) Hyperammonemia in Alzheimer’s disease. Am J Psychiatry 142:71–73

    Article  CAS  PubMed  Google Scholar 

  • Gupta N, Jing Y, Collie ND, Zhang H, Liu P (2012) Ageing alters behavioural function and brain arginine metabolism in male Sprague-Dawley rats. Neuroscience 226:178–196

    Article  CAS  PubMed  Google Scholar 

  • Hamon L, Savarin P, Curmi PA, Pastre D (2011) Rapid assembly and collective behavior of microtubule bundles in the presence of polyamines. Biophys J 101:205–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbron ML, Javidnia M, Moussa CE (2018) Tau clearance improves astrocytic function and brain glutamate-glutamine cycle. J Neurol Sci 391:90–99

    Article  CAS  Google Scholar 

  • Hortnagl H, Berger ML, Sperk G, Pifl C (1991) Regional heterogeneity in the distribution of neurotransmitter markers in the rat hippocampus. Neuroscience 45:261–272

    Article  CAS  PubMed  Google Scholar 

  • Hunt JB Jr, Nash KR, Placides D, Moran P, Selenica ML, Abuqalbeen F, Ratnasamy K, Slouha N, Rodriguez-Ospina S, Savlia M, Ranaweera Y, Reid P, Dickey CA, Uricia R, Yang CG, Sandusky LA, Gordon MN, Morgan D, Lee DC (2015a) Sustained arginase 1 expression modulates pathological tau deposits in a mouse model of tauopathy. J Neurosci 35:14842–14860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt JB Jr, Placides D, Ratnasamy K, Selenica ML, Nash K, Sandusky LA, Abuqalbeen F, Lee DC (2015b) Arginine metabolism and higher-order polyamines impact tau aggregation, microtubule assembly and autophagy in models of tauopathies. Alzheimers Dement 11:636–637

    Article  Google Scholar 

  • Inoue K, Tsutsui H, Akatsu H, Hashizume Y, Matsukawa N, Yamamoto T, ToyoO’ka T (2013) Metabolic profiling of Alzheimer’s disease brains. Sci Rep 3:2364

    Article  PubMed  PubMed Central  Google Scholar 

  • Irwin DJ, Cairns NJ, Grossman M, Mcmillan CT, Lee EB, Van Deerlin VM, Lee VM, Trojanowski JQ (2015) Frontotemporal lobar degeneration: defining phenotypic diversity through personalized medicine. Acta Neuropathol 129:469–491

    Article  PubMed  Google Scholar 

  • Lalonde R, Strazielle C (2003) The effects of cerebellar damage on maze learning in animals. Cerebellum 2:300–309

    Article  CAS  PubMed  Google Scholar 

  • Leitch B, Shevtsova O, Reusch K, Bergin DH, Liu P (2011) Spatial learning-induced increase in agmatine levels at hippocampal CA1 synapses. Synapse 65:146–153

    Article  CAS  PubMed  Google Scholar 

  • Li G, Regunathan S, Barrow CJ, Eshraghi J, Cooper R, Reis DJ (1994) Agmatine: an endogenous clonidine-displacing substance in the brain. Science 263:966–969

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Collie ND, Chary S, Jing Y, Zhang H (2008) Spatial learning results in elevated agmatine levels in the rat brain. Hippocampus 18:1094–1098

    Article  PubMed  Google Scholar 

  • Liu P, Jing Y, Collie ND, Chary S, Zhang H (2009) Memory-related changes in l-citrulline and agmatine in the rat brain. Hippocampus 19:597–602

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Fleete MS, Jing Y, Collie ND, Curtis MA, Waldvogel HJ, Faull RL, Abraham WC, Zhang H (2014) Altered arginine metabolism in Alzheimer’s disease brains. Neurobiol Aging 35:1992–2003

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Jing Y, Collie ND, Dean B, Bilkey DK, Zhang H (2016) Altered brain arginine metabolism in schizophrenia. Transl Psychiatry 6:e871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-González I, Aso E, Carmona M, Armand-Ugon M, Blanco R, Naudi A, Cabre R, Portero-Otin M, Pamplona R, Ferrer I (2015) Neuroinflammatory gene regulation, mitochondrial function, oxidative stress, and brain lipid modifications with disease progression in tau P301S transgenic mice as a model of frontotemporal lobar degeneration-tau. J Neuropathol Exp Neurol 74:975–999

    Article  CAS  PubMed  Google Scholar 

  • Malaterre J, Strambi C, Aouane A, Strambi A, Rougon G, Cayre M (2004) A novel role for polyamines in adult neurogenesis in rodent brain. Eur J Neurosci 20:317–330

    Article  PubMed  Google Scholar 

  • Morris SM Jr (2002) Regulation of enzymes of the urea cycle and arginine metabolism. Annu Rev Nutr 22:87–105

    Article  CAS  PubMed  Google Scholar 

  • Morris SM Jr (2006) Arginine: beyond protein. Am J Clin Nutr 83:508s–512s

    Article  CAS  PubMed  Google Scholar 

  • Oredsson SM (2003) Polyamine dependence of normal cell-cycle progression. Biochem Soc Trans 31:366–370

    Article  CAS  PubMed  Google Scholar 

  • Petrosini L (2007) “Do what I do” and “do how I do”: different components of imitative learning are mediated by different neural structures. Neuroscientist 13:335–348

    Article  PubMed  Google Scholar 

  • Phadwal K, Kurian D, Salamat MKF, MacRae VE, Diack AB, Manson JC (2018) Spermine increases acetylation of tubulins and facilitates autophagic degradation of prion aggregates. Sci Rep 8:10004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piletz JE, Aricioglu F, Cheng JT, Fairbanks CA, Gilad VH, Haenisch B, Halaris A, Hong S, Lee JE, Li J, Liu P, Molderings GJ, Rodrigues AL, Satriano J, Seong GJ, Wilcox G, Wu N, Gilad GM (2013) Agmatine: clinical applications after 100 years in translation. Drug Discov Today 18:880–893

    Article  CAS  PubMed  Google Scholar 

  • Reis DJ, Regunathan S (2000) Is agmatine a novel neurotransmitter in brain? Trends. Pharmacol Sci 21:187–193

    CAS  Google Scholar 

  • Rock D, Macdonald R (1995) Polyamine regulation of N-methyl-d-aspartate receptor channels. Annu Rev of Pharmacol Toxicol 35:463–482

    Article  CAS  Google Scholar 

  • Rushaidhi M, Jing Y, Zhang H, Liu P (2013) Participation of hippocampal agmatine in spatial learning: an in vivo microdialysis study. Neuropharmacology 65:200–205

    Article  CAS  PubMed  Google Scholar 

  • Sankaranarayanan S, Barten DM, Vana L, Devidze N, Yang L, Cadelina G, Hoque N, DeCarr L, Keenan S, Lin A, Cao Y, Snyder B, Zhang B, Nitla M, Hirschfeld G, Barrezueta N, Polson C, Wes P, Rangan VS, Cacace A, Albright CF, Meredith J Jr, Trojanowski JQ, Lee VM, Brunden KR, Ahlijanian M (2015) Passive immunization with phospho-tau antibodies reduces tau pathology and functional deficits in two distinct mouse tauopathy models. PLoS ONE 10(5):e0125614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savarin P, Barbet A, Delga S, Joshi V, Hamon L, Lefevre J, Nakib S, De Bandt JP, Moinard C, Curmi PA, Pastre D (2010) A central role for polyamines in microtubule assembly in cells. Biochem J 430:151–159

    Article  CAS  PubMed  Google Scholar 

  • Seiler N (2002) Ammonia and Alzheimer’s disease. Neurochem Int 41:189–207

    Article  CAS  PubMed  Google Scholar 

  • Seiller N (2004) Catabolism of polyamines. Amino Acids 26:217–233

    Google Scholar 

  • Seo S, Liu P, Leitch B (2011) Spatial learning-induced accumulation of agmatine and glutamate at hippocampal CA1 synaptic terminals. Neuroscience 192:28–36

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Kirkpatrick LL, Schilling AB, Helseth DL, Chabot N, Keillor JW, Johnson GV, Brady ST (2013) Transglutaminase and polyamination of tubulin: posttranslational modification for stabilizing axonal microtubules. Neuron 78:109–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace HM (2000) The physiological role of the polyamines. Eur J Clin Invest 30:72–78

    Article  Google Scholar 

  • Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiesinger H (2001) Arginine metabolism and the synthesis of nitric oxide in the nervous system. Prog Neurobiol 64:365–391

    Article  CAS  PubMed  Google Scholar 

  • Williams K (1997) Interactions of polyamines with ion channels. Biochem J 325:289–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams K, Romano C, Dichter MA, Molinoff PB (1991) Modulation of the NMDA receptor by polyamines. Life Sci 48:469–498

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Morris SM (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, Maeda J, Suhara T, Trojanowski JQ, Lee VM (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53:337–351

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Carroll J, Trojanowski JQ, Yao Y, Iba M, Potuzak JS, Hogan AM, Xie SX, Ballatore C, Smith AB 3rd, Lee VM, Brunden KR (2012) The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. J Neurosci 32:3601–3611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zolman JF (1993) Biostatistics: experimental design and statistical inference. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Beth Cobden-Cox Research Grant, and Brain Health Research Centre and Department of Anatomy, University of Otago, New Zealand. The authors would also like to thank the technical staff in the Department of Anatomy and School of Pharmacy, University of Otago, for their assistance. Pranav Vemula is a recipient of the University of Otago Postgraduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution.

Additional information

Handling Editor: E. Agostinelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vemula, P., Jing, Y., Zhang, H. et al. Altered brain arginine metabolism in a mouse model of tauopathy. Amino Acids 51, 513–528 (2019). https://doi.org/10.1007/s00726-018-02687-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-018-02687-x

Keywords

Navigation