Skip to main content

Advertisement

Log in

A network biology approach to understanding the importance of chameleon proteins in human physiology and pathology

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Chameleon proteins are proteins which include sequences that can adopt α-helix–β-strand (HE-chameleon) or α-helix–coil (HC-chameleon) or β-strand–coil (CE-chameleon) structures to operate their crucial biological functions. In this study, using a network-based approach, we examined the chameleon proteins to give a better knowledge on these proteins. We focused on proteins with identical chameleon sequences with more than or equal to seven residues long in different PDB entries, which adopt HE-chameleon, HC-chameleon, and CE-chameleon structures in the same protein. One hundred and ninety-one human chameleon proteins were identified via our in-house program. Then, protein–protein interaction (PPI) networks, Gene ontology (GO) enrichment, disease network, and pathway enrichment analyses were performed for our derived data set. We discovered that there are chameleon sequences which reside in protein–protein interaction regions between two proteins critical for their dual function. Analysis of the PPI networks for chameleon proteins introduced five hub proteins, namely TP53, EGFR, HSP90AA1, PPARA, and HIF1A, which were presented in four PPI clusters. The outcomes demonstrate that the chameleon regions are in critical domains of these proteins and are important in the development and treatment of human cancers. The present report is the first network-based functional study of chameleon proteins using computational approaches and might provide a new perspective for understanding the mechanisms of diseases helping us in developing new medical therapies along with discovering new proteins with chameleon properties which are highly important in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmadi M, Jafari R, Marashi SA, Farazmand A (2015a) Evidence for the relationship between the regulatory effects of microRNAs and attack robustness of biological networks. Comput Biol Med 63:83–91

    Article  CAS  PubMed  Google Scholar 

  • Ahmadi M, Jafari R, Marashi SA, Farazmand A (2015b) Indirect role of microRNAs and transcription factors in the regulation of important cancer genes: a network biology approach. Cell Mol Biol (Noisy-le-grand) 61:100–107

  • Almaas E, Oltvai ZN, Barabasi AL (2005) The activity reaction core and plasticity of metabolic networks. PLoS Comput Biol 1:e68

    Article  PubMed  PubMed Central  Google Scholar 

  • Altermann E, Klaenhammer TR (2005) PathwayVoyager: pathway mapping using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. BMC Genom 6:60

    Article  Google Scholar 

  • Assenov Y, Ramirez F, Schelhorn SE, Lengauer T, Albrecht M (2008) Computing topological parameters of biological networks. Bioinformatics 24:282–284

    Article  CAS  PubMed  Google Scholar 

  • Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform 4:2

    Article  Google Scholar 

  • Bahramali G, Goliaei B, Minuchehr Z, Salari A (2016) Chameleon sequences in neurodegenerative diseases. Biochem Biophys Res Commun 472:209–216

    Article  CAS  PubMed  Google Scholar 

  • Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  CAS  PubMed  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic acids res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pages F, Trajanoski Z, Galon J (2009) ClueGO: a Cytoscape plug-into decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browne F, Wang H, Zheng H (2016) Investigating the impact human protein–protein interaction networks have on disease-gene analysis. Int J Mach Learn Cybern, 1–10

  • Cabarkapa V (2015) Cystatin C—more than the marker of the glomerular filtration rate. Med Pregl 68:173–179

    Article  PubMed  Google Scholar 

  • Califano R, Romanidou O, Mountzios G, Landi L, Cappuzzo F, Blackhall F (2016) Management of NSCLC disease progression after first-line EGFR tyrosine kinase inhibitors: what are the issues and potential therapies? Drugs 76:831–840

    Article  CAS  PubMed  Google Scholar 

  • Chang RL, Andrews K, Kim D, Li Z, Godzik A, Palsson BO (2013) Structural systems biology evaluation of metabolic thermotolerance in Escherichia coli. Science 340:1220–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma’ayan A (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform 14:128

    Article  Google Scholar 

  • Chene P (2001) The role of tetramerization in p53 function. Oncogene 20:2611–2617

    Article  CAS  PubMed  Google Scholar 

  • Colombo M, Laayouni H, Invergo BM, Bertranpetit J, Montanucci L (2014) Metabolic flux is a determinant of the evolutionary rates of enzyme-encoding genes. Evolution 68:605–613

    Article  CAS  PubMed  Google Scholar 

  • Cui Q, Yu Z, Purisima EO, Wang E (2006) Principles of microRNA regulation of a human cellular signaling network. Mol Syst Biol 2:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui Q, Yu Z, Pan Y, Purisima EO, Wang E (2007) MicroRNAs preferentially target the genes with high transcriptional regulation complexity. Biochem Biophys Res Commun 352:733–738

    Article  CAS  PubMed  Google Scholar 

  • Cumberworth A, Lamour G, Babu MM, Gsponer J (2013) Promiscuity as a functional trait: intrinsically disordered regions as central players of interactomes. Biochem J 454:361–369

    Article  CAS  PubMed  Google Scholar 

  • Drescher M, Huber M, Subramaniam V (2012) Hunting the chameleon: structural conformations of the intrinsically disordered protein alpha-synuclein. ChemBioChem 13:761–768

    Article  CAS  PubMed  Google Scholar 

  • Eckl JM, Richter K (2013) Functions of the Hsp90 chaperone system: lifting client proteins to new heights. Int J Biochem Mol Biol 4:157–165

    PubMed  PubMed Central  Google Scholar 

  • Gajiwala KS, Feng J, Ferre R, Ryan K, Brodsky O, Weinrich S, Kath JC, Stewart A (2013) Insights into the aberrant activity of mutant EGFR kinase domain and drug recognition. Structure 21:209–219

    Article  CAS  PubMed  Google Scholar 

  • Gazdar AF (2009) Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene 28(Suppl 1):S24–S31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gendoo DM, Harrison PM (2011) Discordant and chameleon sequences: their distribution and implications for amyloidogenicity. Protein Sci 20:567–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghozlane A, Joseph AP, Bornot A, de Brevern AG (2009) Analysis of protein chameleon sequence characteristics. Bioinformation 3:367–369

    Article  PubMed  PubMed Central  Google Scholar 

  • Grainger RJ, Beggs JD (2005) Prp8 protein: at the heart of the spliceosome. RNA 11:533–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo JT, Jaromczyk JW, Xu Y (2007) Analysis of chameleon sequences and their implications in biological processes. Proteins 67:548–558

    Article  CAS  PubMed  Google Scholar 

  • Hanan EJ, Eigenbrot C, Bryan MC, Burdick DJ, Chan BK, Chen Y, Dotson J, Heald RA, Jackson PS, La H, Lainchbury MD, Malek S, Purkey HE, Schaefer G, Schmidt S, Seward EM, Sideris S, Tam C, Wang S, Yeap SK, Yen I, Yin J, Yu C, Zilberleyb I, Heffron TP (2014) Discovery of selective and noncovalent diaminopyrimidine-based inhibitors of epidermal growth factor receptor containing the T790M resistance mutation. J Med Chem 57:10176–10191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosseini Z, Marashi SA (2015) Hierarchical organization of fluxes in Escherichia coli metabolic network: using flux coupling analysis for understanding the physiological properties of metabolic genes. Gene 561:199–208

    Article  CAS  PubMed  Google Scholar 

  • Jacoboni I, Martelli PL, Fariselli P, Compiani M, Casadio R (2000) Predictions of protein segments with the same aminoacid sequence and different secondary structure: a benchmark for predictive methods. Proteins 41:535–544

    Article  CAS  PubMed  Google Scholar 

  • Joerger AC, Fersht AR (2010) The tumor suppressor p53: from structures to drug discovery. Cold Spring Harbor Perspect Biol 2:a000919

    Article  Google Scholar 

  • Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345:91–104

    Article  CAS  PubMed  Google Scholar 

  • Joy MP, Brock A, Ingber DE, Huang S (2005) High-betweenness proteins in the yeast protein interaction network. J Biomed Biotechnol 2005:96–103

    Article  PubMed  PubMed Central  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  CAS  PubMed  Google Scholar 

  • Kabsch W, Sander C (1984) On the use of sequence homologies to predict protein structure: identical pentapeptides can have completely different conformations. Proc Natl Acad Sci USA 81:1075–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamada R, Toguchi Y, Nomura T, Imagawa T, Sakaguchi K (2016) Tetramer formation of tumor suppressor protein p53: structure, function, and applications. Biopolymers 106:598–612

    Article  CAS  PubMed  Google Scholar 

  • Kar G, Gursoy A, Keskin O (2009) Human cancer protein-protein interaction network: a structural perspective. PLoS Comput Biol 5:e1000601

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur G, Levy E (2012) Cystatin C in Alzheimer’s disease. Front Mol Neurosci 5:79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishna N, Guruprasad K (2011) Certain heptapeptide and large sequences representing an entire helix, strand or coil conformation in proteins are associated as chameleon sequences. Int J Biol Macromol 49:218–222

    Article  CAS  PubMed  Google Scholar 

  • Kuan CT, Wikstrand CJ, Bigner DD (2001) EGF mutant receptor vIII as a molecular target in cancer therapy. Endocr Relat Cancer 8:83–96

    Article  CAS  PubMed  Google Scholar 

  • Kulikov R, Winter M, Blattner C (2006) Binding of p53 to the central domain of Mdm2 is regulated by phosphorylation. J Biol Chem 281:28575–28583

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang T, Schwartz SJ, Sun D (2009) New developments in Hsp90 inhibitors as anti-cancer therapeutics: mechanisms, clinical perspective and more potential. Drug Resist Updates 12:17–27

    Article  CAS  Google Scholar 

  • Li W, Kinch LN, Karplus PA, Grishin NV (2015) ChSeq: a database of chameleon sequences. Protein Sci 24:1075–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcos-Carcavilla A, Calvo JH, Gonzalez C, Moazami-Goudarzi K, Laurent P, Bertaud M, Hayes H, Beattie AE, Serrano C, Lyahyai J, Martin-Burriel I, Serrano M (2008) Structural and functional analysis of the HSP90AA1 gene: distribution of polymorphisms among sheep with different responses to scrapie. Cell Stress Chaperones 13:19–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michelsen K, Jordan JB, Lewis J, Long AM, Yang E, Rew Y, Zhou J, Yakowec P, Schnier PD, Huang X, Poppe L (2012) Ordering of the N-terminus of human MDM2 by small molecule inhibitors. J Am Chem Soc 134:17059–17067

    Article  CAS  PubMed  Google Scholar 

  • Moll UM, Petrenko O (2003) The MDM2-p53 interaction. Mol Cancer Res 1:1001–1008

    CAS  PubMed  Google Scholar 

  • Mozaffari-Jovin S, Wandersleben T, Santos KF, Will CL, Luhrmann R, Wahl MC (2014) Novel regulatory principles of the spliceosomal Brr2 RNA helicase and links to retinal disease in humans. RNA Biol 11:298–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366:2–16

    Article  CAS  PubMed  Google Scholar 

  • Notebaart RA, Teusink B, Siezen RJ, Papp B (2008) Co-regulation of metabolic genes is better explained by flux coupling than by network distance. PLoS Comput Biol 4:e26

    Article  PubMed  PubMed Central  Google Scholar 

  • Notebaart RA, Kensche PR, Huynen MA, Dutilh BE (2009) Asymmetric relationships between proteins shape genome evolution. Genome Biol 10:R19

    Article  PubMed  PubMed Central  Google Scholar 

  • Notebaart RA, Szappanos B, Kintses B, Pal F, Gyorkei A, Bogos B, Lazar V, Spohn R, Csorgo B, Wagner A, Ruppin E, Pal C, Papp B (2014) Network-level architecture and the evolutionary potential of underground metabolism. Proc Natl Acad Sci USA 111:11762–11767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal C, Papp B, Lercher MJ, Csermely P, Oliver SG, Hurst LD (2006) Chance and necessity in the evolution of minimal metabolic networks. Nature 440:667–670

    Article  CAS  PubMed  Google Scholar 

  • Papp B, Notebaart RA, Pal C (2011) Systems-biology approaches for predicting genomic evolution. Nat Rev Genet 12:591–602

    Article  CAS  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Pinero J, Queralt-Rosinach N, Bravo A, Deu-Pons J, Bauer-Mehren A, Baron M, Sanz F, Furlong LI (2015) DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database (Oxford) 2015:bav028

  • Pinotsis N, Wilmanns M (2008) Protein assemblies with palindromic structure motifs. Cell Mol Life Sci 65:2953–2956

    Article  CAS  PubMed  Google Scholar 

  • Rose PW, Bi C, Bluhm WF, Christie CH, Dimitropoulos D, Dutta S, Green RK, Goodsell DS, Prlic A, Quesada M, Quinn GB, Ramos AG, Westbrook JD, Young J, Zardecki C, Berman HM, Bourne PE (2013) The RCSB Protein Data Bank: new resources for research and education. Nucleic Acids Res 41:D475–D482

    Article  CAS  PubMed  Google Scholar 

  • Saha T, Kar RK, Sa G (2015) Structural and sequential context of p53: a review of experimental and theoretical evidence. Prog Biophys Mol Biol 117:250–263

    Article  CAS  PubMed  Google Scholar 

  • Santiago JA, Potashkin JA (2014) A network approach to clinical intervention in neurodegenerative diseases. Trends Mol Med 20:694–703

    Article  PubMed  Google Scholar 

  • Saravanan KM, Selvaraj S (2012) Search for identical octapeptides in unrelated proteins: structural plasticity revisited. Biopolymers 98:11–26

    Article  CAS  PubMed  Google Scholar 

  • Schellenberg MJ, Ritchie DB, Wu T, Markin CJ, Spyracopoulos L, MacMillan AM (2010) Context-dependent remodeling of structure in two large protein fragments. J Mol Biol 402:720–730

    Article  CAS  PubMed  Google Scholar 

  • Schellenberg MJ, Wu T, Ritchie DB, Fica S, Staley JP, Atta KA, LaPointe P, MacMillan AM (2013) A conformational switch in PRP8 mediates metal ion coordination that promotes pre-mRNA exon ligation. Nat Struct Mol Biol 20:728–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schipper HM (2011) Heme oxygenase-1 in Alzheimer disease: a tribute to Moussa Youdim. J Neural Transm (Vienna) 118:381–387

    Article  CAS  Google Scholar 

  • Seo YH (2015) Small molecule inhibitors to disrupt protein-protein interactions of heat shock protein 90 chaperone machinery. J Cancer Prev 20:5–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Shangary S, Wang S (2008) Targeting the MDM2-p53 interaction for cancer therapy. Clin Cancer Res 14:5318–5324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sigalov AB (2016) Structural biology of intrinsically disordered proteins: revisiting unsolved mysteries. Biochimie 125:112–118

    Article  CAS  PubMed  Google Scholar 

  • Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432

    Article  CAS  PubMed  Google Scholar 

  • Sprenger J, Lynn Fink J, Karunaratne S, Hanson K, Hamilton NA, Teasdale RD (2008) LOCATE: a mammalian protein subcellular localization database. Nucleic Acids Res 36:D230–D233

    Article  CAS  PubMed  Google Scholar 

  • Stanga S, Lanni C, Govoni S, Uberti D, D’Orazi G, Racchi M (2010) Unfolded p53 in the pathogenesis of Alzheimer’s disease: is HIPK2 the link? Aging (Albany NY) 2:545–554

    Article  CAS  Google Scholar 

  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452

    Article  PubMed  Google Scholar 

  • Takano K, Katagiri Y, Mukaiyama A, Chon H, Matsumura H, Koga Y, Kanaya S (2007) Conformational contagion in a protein: structural properties of a chameleon sequence. Proteins 68:617–625

    Article  CAS  PubMed  Google Scholar 

  • Tidow H, Lauber T, Vitzithum K, Sommerhoff CP, Rosch P, Marx UC (2004) The solution structure of a chimeric LEKTI domain reveals a chameleon sequence. Biochemistry 43:11238–11247

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246

    Article  CAS  PubMed  Google Scholar 

  • van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, Kim PM, Kriwacki RW, Oldfield CJ, Pappu RV, Tompa P, Uversky VN, Wright PE, Babu MM (2014) Classification of intrinsically disordered regions and proteins. Chem Rev 114:6589–6631

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Hu Y (2012) Small molecule agents targeting the p53-MDM2 pathway for cancer therapy. Med Res Rev 32:1159–1196

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Niemevz F, Lad L, Huang L, Alvarez DE, Buldain G, Poulos TL, de Montellano PR (2004) Human heme oxygenase oxidation of 5- and 15-phenylhemes. J Biol Chem 279:42593–42604

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Ding Y, Li X, Wu X (2015) Cystatin C is a disease-associated protein subject to multiple regulation. Immunol Cell Biol 93:442–451

    Article  CAS  PubMed  Google Scholar 

  • Young JC, Moarefi I, Hartl FU (2001) Hsp90: a specialized but essential protein-folding tool. J Cell Biol 154:267–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Thiele I, Weekes D, Li Z, Jaroszewski L, Ginalski K, Deacon AM, Wooley J, Lesley SA, Wilson IA, Palsson B, Osterman A, Godzik A (2009) Three-dimensional structural view of the central metabolic network of Thermotoga maritima. Science 325:1544–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Nasibeh Khayyer for her valuable advice on the work. The work was done at the Bioinformatics Lab of the National Institute of Genetic Engineering and Biotechnology Grant No. 303 and at the Bioinformatics Group of University of Tehran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bahram Goliaei or Zarrin Minuchehr.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: L. Taher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahramali, G., Goliaei, B., Minuchehr, Z. et al. A network biology approach to understanding the importance of chameleon proteins in human physiology and pathology. Amino Acids 49, 303–315 (2017). https://doi.org/10.1007/s00726-016-2361-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2361-6

Keywords

Navigation