Skip to main content

Advertisement

Log in

Enzyme promiscuity in earthworm serine protease: substrate versatility and therapeutic potential

  • Invited Review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Enzymes are the most versatile molecules in the biological world. These amazing molecules play an integral role in the regulation of various metabolic pathways and physiology subsequently. Promiscuity of an enzyme is the capacity to catalyze additional biochemical reactions besides their native one. Catalytic promiscuity has shown great impact in enzyme engineering for commercial enzyme and therapeutics with natural or engineered catalytic promiscuity. The earthworm serine protease (ESP) is a classic example of enzyme promiscuity and studied for its therapeutic potential over the last few decades. The ESP was reported for several therapeutic properties and fibrinolytic activity has been much explored. ESP, a complex enzyme exists as several isoforms of molecular weight ranging from 14 to 33 kDa. The fibrinolytic capacity of the enzyme has been studied in different species of earthworm and molecular mechanism is quite different from conventional thrombolytics. Cytotoxic and anti-tumor activities of ESP were evaluated using several cancer cell lines. Enzyme had shown tremendous scope in fighting against plant viruses and microbes. ESP is also reported for anti-inflammatory activity and anti-oxidant property. Apart from these, recently, ESP is reported for DNase activity. The daunting challenge for researchers is to understand the molecular mechanism for such diverse properties and possibility of enzyme promiscuity. This review emphasizes molecular mechanism of ESP governing various biochemical reactions. Further, the concept of enzyme promiscuity in ESP towards development of novel enzyme based drugs has been reviewed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Balamurugan M, Parthasarathi K, Cooper EL, Ranganathan LS (2009) Anti-inflammatory and antipyretic activities of earthworm extract—Lampito mauritii (Kinberg). J Ethnopharmacol 121:330–332

    Article  CAS  PubMed  Google Scholar 

  • Banerjee R (2014) Introduction to the thematic minireview series on enzyme evolution. J Biol Chem 289(44):30196–30197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilej M, Brys L, Beschin A et al (1995) Identification of a cytolytic protein in the coelomic fluid of Eisenia fetida earthworm. Immunol Lett 45:123–128

    Article  CAS  PubMed  Google Scholar 

  • Bilej M, Prochazkova P et al (2010) Invertebrate immunity. Adv Exp Med Biol 708:66–79

    Article  CAS  PubMed  Google Scholar 

  • Boehlein SK, Rosa-Rodriguez JG et al (1997) Catalytic activity of the N-terminal domain of Escherichia coli asparagine synthetase B can be reengineered by a single-point mutation. J Am Chem Soc 119:5785–5791

    Article  CAS  Google Scholar 

  • Carbonell P, Faulon JL (2010) Molecular signatures-based prediction of enzyme promiscuity. Bioinformatics 26(16):2012–2019

    Article  CAS  PubMed  Google Scholar 

  • Cho JH, Park CB et al (1998) Lumbricin I, a novel proline-rich antimicrobial peptide from the earthworm: purification, cDNA cloning and molecular characterization. Biochim Biophy Acta 1408(1):67–76

    Article  CAS  Google Scholar 

  • Cho IH, Choi ES et al (2004) Purification and characterization of six fibrinolytic serine-proteases from earthworm Lumbricus rubellus. J Biochem Mol Biol 37(2):199–205

    Article  CAS  PubMed  Google Scholar 

  • Collen D, De Cock F, Lijnen HR (1984) Biological and thrombolytic properties of proenzyme and active forms of human urokinase. II. Turnover of natural and recombinant urokinase in rabbits and squirrel monkeys. Thromb Haemost 52:24–26

    CAS  PubMed  Google Scholar 

  • Cong Y, Liu Y, Chen JC (2000) Advance in lumbrokinase. Chin J Biochem Pharm 21:159–162

    Google Scholar 

  • Cooper EL, Hrzenjak TM, Grdisa T (2004) Alternative sources of fibrinolytic, anti-coagulative, antimicrobial and anticancer molecules. Int J Immunopathol Pharmacol 17:237–244

    CAS  PubMed  Google Scholar 

  • Copley SD (2015) An evolutionary biochemist’s perspective on promiscuity. Trends Biochem Sci 40(2):72–78. doi:10.1016/j.tibs.2014.12.004

    Article  CAS  PubMed  Google Scholar 

  • Costa-Neto EM (2005) Animal-based medicines: biological prospection and the sustainable use of zoo therapeutic resources. An Acad Bras Cienc 77(1):33–43

    Article  PubMed  Google Scholar 

  • Das UN (2006) Essential fatty acids: biochemistry, physiology and pathology. Biotechnol J 1:420–439. doi:10.1002/biot.200600012

    Article  CAS  PubMed  Google Scholar 

  • Dexter DL, Leith JT (1986) Tumor heterogeneity and drug resistance. J Clin Oncol 4(2):244–257

    CAS  PubMed  Google Scholar 

  • Fan Q, Cen W, Li L et al (2001) Some features of intestinal absorption of intact fibrinolytic enzyme III-1 from Lumbricus rubellus. Biochim Biophys Acta 1526:286–292

    Article  CAS  PubMed  Google Scholar 

  • Giraldo J, Roche D et al (2006) The catalytic power of enzymes: conformational selection or transition state stabilization. FEBS Lett 580(9):2170–2177

    Article  CAS  PubMed  Google Scholar 

  • Gore DR, Karha J, Gibson CM (2003) Safety and efficacy of tenecteplase in acute myocardial infraction. Expert Opin Pharmacother 4:791–798

    Article  Google Scholar 

  • He DW, Zhou F (2005) Study on the anti-tumor effects of earthworm extract. J Yangtze Univ (Nat Sci Edit) 18:225–228

    Google Scholar 

  • Hong C, Takahashi S, Imamura M et al (2007) Earthworm fibrinolytic enzyme- anti-tumor activity on human hepatoma cells in vitro and in vivo. Chin Med J 120(10):898–904

    Google Scholar 

  • Hughes AL (1994) The evolution of functionally novel proteins after gene duplication. Proc Roy Soc Lond B 256:119–124

    Article  CAS  Google Scholar 

  • Hult K, Berglund P (2007) Enzyme promiscuity: mechanism and applications. Trends Biotechnol 25(5):231–238

    Article  CAS  PubMed  Google Scholar 

  • Ismail SA, Pulandiran K, Yegnanarayan R (1992) Anti-inflammatory activity of earthworm extracts. Soil Biol Biochem 24:1253–1254

    Article  Google Scholar 

  • Jensen RA (1976) Enzyme recruitment in evolution of new function. Annu Rev Microbiol 30:409–425

    Article  CAS  PubMed  Google Scholar 

  • Jeon OH, Moon WJ, Kim DS (1995) An anticoagulant/fibrinolytic protease from Lumbricus rubellus. J Biochem Mol Biol 28:138–1452

    CAS  Google Scholar 

  • Ji H, Wang L, Bi H et al (2008) Mechanisms of lumbrokinase in protection of cerebral ischemia. Eur J Pharmacol 590:281–289

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Jin H, Zhang G, Xu G (2000) Changes in coagulation and tissue plasminogen activator after the treatment of cerebral infarction with lumbrokinase. Clin Hemorheol Microcirc 23:213–218

    CAS  PubMed  Google Scholar 

  • Jost C, Nitsche C et al (2014) Promiscuity and selectivity in covalent enzyme inhibition: a systematic study of electrophilic fragments. J Med Chem 57(18):7590–7599. doi:10.1021/jm5006918

    Article  PubMed  Google Scholar 

  • Justicia C, Gabriel C, Planas AM (2000) Activation of the JAK/STAT pathway following transient focal cerebral ischemia: signaling through jak1 and stat3 in astrocytes. Glia 30:253–270

    Article  CAS  PubMed  Google Scholar 

  • Khersonsky O, Tawfik DS (2010) Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem 79:471–505

    Article  CAS  PubMed  Google Scholar 

  • Khersonsky O, Roodveldt C, Tawfik DS (2006) Enzyme promiscuity: evolutionary and mechanistic aspects. Curr Opin Chem Biol 10(5):498–508

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Zhang M, Wang JC, Zhang S, Liu JR, Zhang Q (2006) Effects of absorption enhancers on intestinal absorption of lumbrokinase. Yao Xue Xue Bao 41(10):939–944

    PubMed  Google Scholar 

  • Madison EL, Coombs GS, Corey DR (1995) Substrate specificity of tissue type plasminogen activator. J Biol Chem 270(13):7558–7562

    Article  CAS  PubMed  Google Scholar 

  • Mao S, Yan Z, Chen S (2000) Purification and kinetic characteristics of fibrinolytic enzymes from earthworm. J Wenzhou Med Coll 30:277–278

    Google Scholar 

  • Michael JE, Benjamin FC (2006) Mechanism-based profiling of enzyme families. Chem Rev A23-T. 10.1021/cr050288g

  • Mihara H, Sumi H, Akazawa K (1983) Fibrinolytic enzyme extracted from the earthworm. Thromb Haemost 50(3):258

    Google Scholar 

  • Mihara H, Sumi H, Yoneta T et al (1991) A novel fibrinolytic enzyme extracted from the earthworm, Lumbricus rubellus. Jpn J Physiol 41(3):461–472

    Article  CAS  PubMed  Google Scholar 

  • Mihara H, Nakajima N, Sumi H (1993) Characterization of protein fibrinolytic enzyme in earthworm Lumbricus rubellus. Biosci Biotech Biochem 57:1726–1731

    Article  Google Scholar 

  • Murzin AG (1998) How far divergent evolution goes in proteins. Curr Opin Struct Biol 8:380–387

    Article  CAS  PubMed  Google Scholar 

  • Nakajima N, Mihara H, Sumi H (1993) Characterization of potent fibrinolytic enzymes in earthworm Lumbricus rubellus. Biosci Biotech Biochem 57:1726–1730

    Article  CAS  Google Scholar 

  • O`Brien PJ, Herschlag D (1999) Catalytic promiscuity and the evolution of new enzyme activities. Chem Biol 6:R91–R105

    Article  CAS  Google Scholar 

  • Pan R, Zhang ZJ, He RQ (2010) Earthworm protease. Appl Environ Soil Sci 2010:13. doi:10.1155/2010/294258 (article ID 294258)

    Article  Google Scholar 

  • Pan R, Zhou Y, He HJ, He RQ (2011) An enzyme from the earthworm Eisenia fetida is not only a protease but also a deoxyribonuclease. Biochem Biophys Res Commun 407(1):113–117. doi:10.1016/j.bbrc.2011.02.120

    Article  CAS  PubMed  Google Scholar 

  • Pandya C, Farelli JD, Dunaway-Mariano D et al (2014) Enzyme promiscuity: engine of evolutionary innovation. J Biol Chem 289(44):30229–30236. doi:10.1074/jbc.R114.572990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SY, Kye KC, Lee M (1989) Fibrinolytic activity of the earthworm extract. Thromb Haemosta 62:545–550

    Google Scholar 

  • Perona JJ, Craik CG (1995) Structural basis of substrate specificity in the serine proteases. Protein Sci 4:337–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roch P, Ville P, Cooper EL (1998) Characterization of a 14 kDa plant-related serine protease inhibitor and regulation of cytotoxic activity in earthworm coelomic fluid. Dev Comp Immunol 22(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Rongliang H, Zhang S, Liang H, Li N, Changchun T (2004) Codon optimization, expression, and characterization of recombinant lumbrokinase in goat milk. Protein Expr Purif 37:83–88

    Article  Google Scholar 

  • Sugimoto M, Nakajima N (2001) Molecular cloning, sequencing, and expression of cDNA encoding serine protease with fibrinolytic activity from earthworm. Biosci Biotechnol Biochem 65(7):1575–1580

    Article  CAS  PubMed  Google Scholar 

  • Sumi H, Nakajima N, Mihara H (1993) A very stable and potent fibrinolytic enzyme found in earthworm Lumbricus rubellus autolysate. Comp Biochem Physiol Part B 106:763–766

    Article  Google Scholar 

  • Sun HL, Jiao JD, Pan ZW (2006) The cardioprotective effect and mechanism of lumbrokinase. Yao Xue Xue Bao 41(3):247–251

    CAS  PubMed  Google Scholar 

  • Tang Y, Zhang J, Gui L et al (2000) Crystallization and preliminary X-ray analysis of earthworm fibrinolytic enzyme component A from Eisenia fetida. Acta Cryst D 56:1659–1661

    Article  CAS  Google Scholar 

  • Tang Y, Liang D, Jiang T et al (2002) Crystal structure of earthworm fibrinolytic enzyme component a: revealing the structural determinants of its dual fibrinolytic activity. J Mol Biol 321:57–68

    Article  CAS  PubMed  Google Scholar 

  • Ueda M, Noda K, Nakazawa M et al (2008) A novel anti-plant viral protein from coelomic fluid of the earthworm Eisenia foetida: purification, characterization and its identification as a serine protease. Comp Biochem Physiol Part B 151:381–385

    Article  Google Scholar 

  • Verstraete M (2000) Third-generation thrombolytic drugs. Am J Med 109(1):52–58

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Wang C, Li M et al (2003a) Purification, characterization and crystallization of a group of earthworm fibrinolytic enzymes from Eisenia fetida. Biotechnol Lett 25:1105–1109

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang X, Zhang Y et al (2003b) An antimicrobial peptide of the earthworm Pheretima tschiliensis: cDNA cloning, expression and immunolocalization. Biotechnol Lett 25:1317–1323

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Wang F, Li M et al (2004a) Structural basis for broad substrate specificity of earthworm fibrinolytic enzyme component A. Biochem Biophys Res Commun 325(3):877–882

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Wang C, Li M et al (2004b) Crystallization and preliminary crystallographic analysis of earthworm fibrinolytic enzyme component B from Eisenia fetida. Acta Crystallogr D 60(5):933–935

    Article  PubMed  Google Scholar 

  • Wang F, Wang C, Li M et al (2005) Crystal structure of earthworm fibrinolytic enzyme component B: a novel, glycosylated two-chained trypsin. J Mol Biol 348(3):671–685

    Article  CAS  PubMed  Google Scholar 

  • Wang Feng, Wang Chao, Li Mei et al (2006) Crystal structure of earthworm fibrinolytic enzyme component B: a novel, glycosylated two-chained trypsin. J Mol Biol 348:671–685. doi:10.1016/j.jmb.2005.02.055

    Article  Google Scholar 

  • Wienkers LC, Rock B (2014) Multienzyme kinetics and sequential metabolism. Methods Mol Biol 1113:93–118. doi:10.1007/978-1-62703-758-7_6

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Li L, Zhao J et al (2002a) Effect of α 2 M on earthworm fibrinolytic enzyme III-1 from Lumbricus rubellus. Int J Biol Macromol 31:71–77

    Article  CAS  PubMed  Google Scholar 

  • Wu XQ, Wu C, He RQ (2002b) Immobilized earthworm fibrinolytic enzyme III-1 with carbonyldiimidazole activated-agarose. Protein Pept Lett 9(1):75–80

    Article  CAS  PubMed  Google Scholar 

  • Wu JX, Zhao XY, Pan R, He RQ (2007) Glycosylated trypsin-like proteases from earthworm Eisenia fetida. Int J Biol Macromol 40:399–406

    Article  CAS  PubMed  Google Scholar 

  • Xie JB, He WG, Weng N et al (2003) Extraction and isolation of the anti-tumor protein components from earthworm (Eisenia fetida andrei) and the anti-tumor activity. Chin J Bio Mol Biol 19:359–366

    CAS  Google Scholar 

  • Yang JS, Ru BG (1997) Purification and characterization of an SDS-activated fibrinolytic enzyme from Eisenia fetida. Comp Biochem Physiol Part B 18(3):623–631

    Article  Google Scholar 

  • Yang JS, Ru BG (1998) Degradation of N-acetyl-l-tyrosine ethyl ester (ATEE) by a plasminogen activator from Eisenia fetida (e-PA). Chin J Biochem Mol Biol 14:417–421

    CAS  Google Scholar 

  • Yegnanarayan R, Sethi PP, Rajhans PK et al (1987) Anti-inflammatory activity of total earthworm extracts in rats. Ind J Pharm 19:221–224

    Google Scholar 

  • Yegnanarayan R, Ismail SA, Shorti DS (1998) Anti-inflammatory activity of two earthworm portions in carrageenan pedal oedema test in rats. Ind J Physiol Pharmacol 32:72–74

    Google Scholar 

  • Yuan L, Xu JM, Zhou YC (2004) Effects of the purified earthworm extracts on various hemal tumor cells. Clin Med J China 11:177–179

    Google Scholar 

  • Zhang X, Houk KN (2005) Why enzymes are proficient catalysts: beyond the Pauling paradigm. Acc Chem Res 38(5):379–385

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang J, Kuang P et al (2003) The effect of lumbrokinase on P-selectin and E-selectin in cerebral ischemia model of rat. J TraditChin Med 23:141–146

    Google Scholar 

  • Zhang JL, Liu ZZ, Wang XY et al (2008) Purification and characterization of deoxyribonuclease from earthworm Eisenia foetida. Beijing Da Xue Xue Bao 40(5):519–523

    CAS  PubMed  Google Scholar 

  • Zhao J, Li L, Wu C, He RQ (2002a) Hydrolysis of fibrinogen and plasminogen by immobilized earthworm fibrinolytic enzyme II from Eisenia fetida. Int J Biol Macromol 32:165–171

    Article  Google Scholar 

  • Zhao R, Ji JG, Tong YP et al (2002b) Isolation and identification of proteins with anti-tumor and fibrinolysogen kinase activities from Eisenia foetida. Acta Biochim Biophys Sin 34:576–582

    CAS  PubMed  Google Scholar 

  • Zhao J, Pan R, He J, et al (2007) Eisenia fetida protease-III-1 functions in both fibrinolysis and fibrogenesis. J of Biomed Biotechnol 2007, Article ID 97654

  • Zhao J, Xiao R, He J, Pan R et al (2007b) In situ localization and substrate specificity of earthworm protease-II and protease III-1 from Eisenia fetida. Int J Biol Macromol 40:67–75

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, He ZZ, Sun KD, Wang SF (2000) Effect of lumbrokinase on experimental thrombus. J Chin Pharm Univ 31:50–52

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Principal and the management of R.V.R. & J.C. College of Engineering (A), Guntur, Andhra Pradesh, India, for providing support to the current study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Pulicherla.

Ethics declarations

Conflict of interest

Author declares no conflict of interest.

Additional information

Handling Editor: C. Schiene-Fischer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, M.K., Pulicherla, K.K. Enzyme promiscuity in earthworm serine protease: substrate versatility and therapeutic potential. Amino Acids 48, 941–948 (2016). https://doi.org/10.1007/s00726-015-2162-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2162-3

Keywords

Navigation