Skip to main content

Advertisement

Log in

N-acetylcysteine stimulates protein synthesis in enterocytes independently of glutathione synthesis

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Dietary supplementation with N-acetylcysteine (NAC) has been reported to improve intestinal health and treat gastrointestinal diseases. However, the underlying mechanisms are not fully understood. According to previous reports, NAC was thought to exert its effect through glutathione synthesis. This study tested the hypothesis that NAC enhances enterocyte growth and protein synthesis independently of cellular glutathione synthesis. Intestinal porcine epithelial cells were cultured for 3 days in Dulbecco’s modified Eagle medium containing 0 or 100 μM NAC. To determine a possible role for GSH (the reduced form of glutathione) in mediating the effect of NAC on cell growth and protein synthesis, additional experiments were conducted using culture medium containing 100 μM GSH, 100 μM GSH ethyl ester (GSHee), diethylmaleate (a GSH-depletion agent; 10 μM), or a GSH-synthesis inhibitor (buthionine sulfoximine, BSO; 20 μM). NAC increased cell proliferation, GSH concentration, and protein synthesis, while inhibiting proteolysis. GSHee enhanced cell proliferation and GSH concentration without affecting protein synthesis but inhibited proteolysis. Conversely, BSO or diethylmaleate reduced cell proliferation and GSH concentration without affecting protein synthesis, while promoting protein degradation. At the signaling level, NAC augmented the protein abundance of total mTOR, phosphorylated mTOR, and phosphorylated 70S6 kinase as well as mRNA levels for mTOR and p70S6 kinase in IPEC-1 cells. Collectively, these results indicate that NAC upregulates expression of mTOR signaling proteins to stimulate protein synthesis in enterocytes independently of GSH generation. Our findings provide a hitherto unrecognized biochemical mechanism for beneficial effects of NAC in intestinal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BSO:

Buthionine sulfoximine

DEM:

Diethylmaleate

GSH:

Glutathione

GSHee:

Glutathione ethyl esters

HMBS:

Hydroxymethylbilane synthase

HPRT1:

Hypoxanthine phosphoribosyltransferase 1

mTOR:

Mammalian target of rapamycin

RPL19:

Ribosomal protein L19

4E-BP1:

4E-binding protein-1

References

  • Barajas-Espinosa A, Basye A, Jesse E et al (2014) Redox activation of DUSP4 by N-acetylcysteine protects endothelial cells from Cd2+-induced apoptosis. Free Radic Biol Med 74:188–199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bruel T, Guibon R, Melo S et al (2010) Epithelial induction of porcine suppressor of cytokine signaling 2 (SOCS2) gene expression in response to Entamoeba histolytica. Dev Comp Immunol 34:562–571

    Article  CAS  PubMed  Google Scholar 

  • Cossarizza A, Franceschi C, Monti D et al (1995) Protective effect of N-acetylcysteine in tumor necrosis factor-alpha-induced apoptosis in U937 cells—the role of mitochondria. Exp Cell Res 220:232–240

    Article  CAS  PubMed  Google Scholar 

  • Fu WJ, Stromberg AJ, Viele K et al (2010) Statistics and bioinformatics in nutritional sciences: analysis of complex data in the era of systems biology. J Nutr Biochem 21:561–572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haynes TE, Li P, Li X et al (2009) l-Glutamine or L-alanyl-L-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids 37:131–142

    Article  CAS  PubMed  Google Scholar 

  • Hou Y, Wang L, Zhang W et al (2012) Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide. Amino Acids 43:1233–1242

    Article  CAS  PubMed  Google Scholar 

  • Hou Y, Wang L, Yi D et al (2013) N-acetylcysteine reduces inflammation in the small intestine by regulating redox, EGF and TLR4 signaling. Amino Acids 45:513–522

    Article  CAS  PubMed  Google Scholar 

  • Hou YQ, Wang L, Yi D, Wu G (2015) N-acetylcysteine and intestinal health: a focus on its mechanism of action. Front Biosci 20:872–891

    Article  Google Scholar 

  • Huang TS, Duyster J, Wang JY (1995) Biological response to phorbol ester determined by alternative G1 pathways. Proc Natl Acad Sci 92:4793–4797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iantomasi T, Favilli F, Degl’Innocenti D et al (1999) Increased glutathione synthesis associated with platelet-derived growth factor stimulation of NIH3T3 fibroblasts. Biochim Biophys Acta 1452:303–312

    Article  CAS  PubMed  Google Scholar 

  • Jones DP, Go YM, Anderson CL et al (2004) Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control. FASEB J 18:1246–1248

    CAS  PubMed  Google Scholar 

  • Kim KY, Rhim T, Choi I et al (2001) N-acetylcysteine induces cell cycle arrest in hepatic stellate cells through its reducing activity. J Biol Chem 276:40591–40598

    Article  CAS  PubMed  Google Scholar 

  • Kong X, Tan B, Yin Y et al (2012) L-Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. J Nutr Biochem 23:1178–1183

    Article  CAS  PubMed  Google Scholar 

  • Lai ZW, Hanczko R, Bonilla E et al (2012) N-acetylcysteine reduces disease activity by blocking mammalian target of rapamycin in T cells from systemic lupus erythematosus patients: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum 64:2937–2946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee MF, Chan CY, Hung HC et al (2013) N-acetylcysteine (NAC) inhibits cell growth by mediating the EGFR/Akt/HMG box-containing protein 1 (HBP1) signaling pathway in invasive oral cancer. Oral Oncol 49:129–135

    Article  CAS  PubMed  Google Scholar 

  • Levy EJ, Anderson ME, Meister A (1993) Transport of glutathione diethyl ester into human cells. Proc Natl Acad Sci 90:9171–9917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li P, Kim SW, Li X et al (2008) Dietary supplementation with cholesterol and docosahexaenoic acid increases the activity of the arginine-nitric oxide pathway in tissues of young pigs. Nitric Oxide 19:259–265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu M, Wikonkal NM, Brash DE (1999) Induction of cyclin-dependent kinase inhibitors and G1 prolongation by the chemopreventive agent N-acetylcysteine. Carcinogenesis 20:1869–1872

    Article  CAS  PubMed  Google Scholar 

  • Markovic J, Mora NJ, Broseta AM et al (2009) The depletion of nuclear glutathione impairs cell proliferation in 3T3 fibroblasts. PLoS One 4:e6413

    Article  PubMed Central  PubMed  Google Scholar 

  • Mårtensson J, Jain A, Meister A (1990) Glutathione is required for intestinal function. Proc Natl Acad Sci 87:1715–1719

    Article  PubMed Central  PubMed  Google Scholar 

  • Mayer M, Noble M (1994) N-acetyl-l-cysteine is a pluripotent protector against cell-death and enhancer of trophic factor-mediated cell-survival in-vitro. Proc Natl Acad Sci 91:7496–7500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meurens F, Berri M, Auray G et al (2009) Early immune response following Salmonella enterica subspecies enterica serovar Typhimurium infection in porcine jejunal gut loops. Vet Res 40:5

    Article  PubMed  Google Scholar 

  • Nygard A, Jøgensen CB, Cirera S et al (2007) Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Mol Biol 8:67

    Article  PubMed Central  PubMed  Google Scholar 

  • Ozdemir R, Yurttutan S, Sari FN et al (2012) Antioxidant effects of N-acetylcysteine in a neonatal rat model of necrotizing enterocolitis. J Pediatr Surg 47:1625–1627

    Article  Google Scholar 

  • Romagnoli C, Marcucci T, Picariello L et al (2013) Role of N-acetylcysteine and GSH redox system on total and active MMP-2 in intestinal myofibroblasts of Crohn’s disease patients. Int J Colorectal Dis 28:915–924

    Article  PubMed Central  PubMed  Google Scholar 

  • Ruiz E, Siow RC, Bartlett SR et al (2003) Vitamin C inhibits diethylmaleate-induced l-cystine transport in human vascular smooth muscle cells. Free Radic Biol Med 34:103–110

    Article  CAS  PubMed  Google Scholar 

  • Samuni Y, Goldstein S, Dean OM et al (2013) The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta 1830:4117–4129

    Article  CAS  PubMed  Google Scholar 

  • Shen HM, Yang CF, Ding WX et al (2001) Superoxide radical-initiated apoptotic signalling pathway in selenite-treated HepG(2) cells: mitochondria serve as the main target. Free Radic Biol Med 30:9–21

    Article  CAS  PubMed  Google Scholar 

  • Shingaki T, Nimura N (2011) Improvement of translation efficiency in an Escherichia coli cell-free protein system using cysteine. Protein Expr Purif 77:193–197

    Article  CAS  PubMed  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  PubMed  Google Scholar 

  • Suryawan A, O’Connor PMJ, Bush JA et al (2009) Differential regulation of protein synthesis by amino acids and insulin in peripheral and visceral tissues of neonatal pigs. Amino Acids 37:105–110

    Article  Google Scholar 

  • Tan B, Yin Y, Kong X et al (2010) l-Arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids 38:1227–1235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Q, Hou Y, Yi D et al (2013) Protective effects of N-acetylcysteine on acetic acid-induced colitis in a porcine model. BMC Gastroenterol 13:133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang W, Dai Z, Wu Z et al (2014) Glycine is a nutritionally essential amino acid for maximal growth of milk-fed young pigs. Amino Acids 46:2037–2045

    Article  CAS  PubMed  Google Scholar 

  • Wei JW, Carroll RJ, Harden KK et al (2012) Comparisons of treatment means when factors do not interact in two-factorial studies. Amino Acids 42:2031–2035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  Google Scholar 

  • Wu G, Thompson JR (1990) The effect of glutamine on protein turnover in chick skeletal muscle in vitro. Biochem J 265:593–598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu G, Fang YZ, Yang S et al (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Dai ZL et al (2014) Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci 2:387–417

    Article  CAS  PubMed  Google Scholar 

  • Xi P, Jiang Z, Dai Z et al (2012) Regulation of protein turnover by l-glutamine in porcine intestinal epithelial cells. J Nutr Biochem 23:1012–1017

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Tan P, Zhou W et al (2012) N-acetylcysteine protects against hypoxia mimetic-induced autophagy by targeting the HIF-1α pathway in retinal ganglion cells. Cell Mol Neurobiol 32:1275–1285

    Article  CAS  PubMed  Google Scholar 

  • Yao K, Yin Y, Li X et al (2012) Alpha-ketoglutarate inhibits glutamine degradation and enhances protein synthesis in intestinal porcine epithelial cells. Amino Acids 42:491–2500

    Article  Google Scholar 

  • Yi D, Hou Y, Wang L et al (2015) L-Glutamine enhances enterocyte growth via activation of the mTOR signaling pathway independently of AMPK. Amino Acids 47:65–78

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Cai X, Guo Q et al (2013) Effect of N-acetyl cysteine on enterocyte apoptosis and intracellular signalling pathways’ response to oxidative stress in weaned piglets. Br J Nutr 110:1938–1947

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was jointly supported by the National Natural Science Foundation of China (Nos. 31372319, 31572416, 31402084), the Hubei Provincial Key Project for Scientific and Technical Innovation (2014ABA022), Hubei Provincial Research and Development Program (No. 2010BB023), Natural Science Foundation of Hubei Province (Nos. 2013CFA097, 2012FFB04805, 2011CDA131), the Hubei Hundred Talent Program, Agriculture and Food Research Initiative Competitive Grants of (2014-67015-21770) of the USDA National Institute of Food and Agriculture, and Texas A&M AgriLife Research (H-82000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqing Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, D., Hou, Y., Wang, L. et al. N-acetylcysteine stimulates protein synthesis in enterocytes independently of glutathione synthesis. Amino Acids 48, 523–533 (2016). https://doi.org/10.1007/s00726-015-2105-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2105-z

Keywords

Navigation