Skip to main content
Log in

Proteome changes during yeast-like and pseudohyphal growth in the biofilm-forming yeast Pichia fermentans

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The Pichia fermentans strain DISAABA 726 is a biofilm-forming yeast that has been proposed as biocontrol agent to control brown rot on apple. How ever, when inoculated on peach, strain 726 shows yeast-like to pseudohyphal transition coupled to a pathogenic behaviour. To identify the proteins potentially involved in such transition process, a comparative proteome analysis of P. fermentans 726 developed on peach (filamentous growth) vs apple (yeast-like growth) was carried out using two-dimensional gel electrophoresis coupled with mass spectrometry analysis. The proteome comparison was also performed between the two different cell morphologies induced in a liquid medium amended with urea (yeast-like cells) or methionine (filamentous cells) to exclude fruit tissue impact on the transition. Seventy-three protein spots showed significant variations in abundance (±twofold, p < 0.01, confidence intervals 99 %) between pseudohyphal vs yeast-like morphology produced on fruits. Among them, 30 proteins changed their levels when the two morphologies were developed in liquid medium. The identified proteins belong to several pathways and functions, such as glycolysis, amino acid synthesis, chaperones, and signalling transduction. The possible role of a group of proteins belonging to the carbohydrate pathway in the metabolic re-organisation during P. fermentans dimorphic transition is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aradhana A, Mangesh J, Deshpand MV (2004) Morphology-associated expression of NADP-dependent glutamate dehydrogenases during yeast-mycelium transition of a dimorphic fungus Benjaminiella poitrasii. Antonie Van Leeuwenhoek 85:327–334

    Article  Google Scholar 

  • Ayscough KR, Stryker J, Pokala N, Sanders M, Crews P, Drubin DG (1997) High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J Cell Biol 137:399–416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bremer HJ, Anninos A, Schultz B (1996) Amino acid composition of food products used in the treatment of patients with disorders of the amino acid and protein metabolism. Eur J Pedriatr 55:S108–S114

    Article  Google Scholar 

  • Chen G, Tarek G, Gharib TG, Huang C-C, Taylor JMG, David E, Misek DE, Kardia SRL, Giordano TG, Iannettoni MD, Orringer MB, Hanash SM, Beer DG (2002) Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteomics 1:304–313

    Article  CAS  PubMed  Google Scholar 

  • Dickinson JR (2008) Filament formation in Saccharomices cerevisiae. Folia Microbiol 53:3–14

    Article  CAS  Google Scholar 

  • Dragosits M, Stadlmann J, Albiol J, Baumann K, Maurer M, Gasser B, Sauer M, Altmann F, Ferrer P, Mattanovich D (2009) The effect of temperature on the proteome of recombinant Pichia pastoris. J Proteome Res 8:1380–1392

    Article  CAS  PubMed  Google Scholar 

  • Droby S, Wisniewski M, Macarisin D, Wilson C (2009) Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biol Technol 52:137–145

    Article  Google Scholar 

  • Fiori S, Scherm B, Liu J, Farrell R, Mannazzu I, Budroni M, Maserti BE, Wisniewski ME, Migheli Q (2012) Identification of differentially expressed genes associated with changes in the morphology of Pichia on apple and peach fruit. FEMS Yeast Res 12:785–795

    Article  CAS  PubMed  Google Scholar 

  • Fu H, Subramanian RR, Masters SC (2000) 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 40:617–647

    Article  CAS  PubMed  Google Scholar 

  • Gancedo JM (2001) Control of pseudohyphae formation in Saccharomyces cerevisiae. FEMS Microbiol Rev 25:107–123

    Article  CAS  PubMed  Google Scholar 

  • Giobbe S, Scherm B, Zara G, Budroni M, Migheli Q (2007) The strange case of a biofilm-forming strain of Pichia fermentans, which controls Monilinia brown rot on apple but is pathogenic on peach fruit. FEMS Yeast Res 7:1389–1398

    Article  CAS  PubMed  Google Scholar 

  • Han-Yaku H, Naka W, Tajima S, Harada T, Nishikawa T (1996) Differential expression of the 45 kDa protein (actin) during the dimorphic transition of Sporothrix schenckii. J Med Vet Mycol 34:175–180

    Article  CAS  PubMed  Google Scholar 

  • Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Rev Appl Environ Microbiol 74:2259–2266

    Article  CAS  Google Scholar 

  • Herbert B, Galvani M, Hamdan M, Olivieri E, MacCarthy J, Pedersen S, Righetti PG (2001) Reduction and alkylation of proteins in preparation of two-dimensional map analysis: why, when, and how? Electrophoresis 22:2046–2057

    Article  CAS  PubMed  Google Scholar 

  • Hurtado CAR, Rachubinski RA (2002) YIBMH1 encodes a 14-3-3 protein that promotes filamentous growth in the dimorphic yeast Yarrowia lipolytica. Microbiol 148:3725–3735

    Article  CAS  Google Scholar 

  • Joshi CV, Ghormade V, Kunde P, Kulkarni P, Mamgain H, Bhat S, Paknikar KM, Deshpande MV (2010) Flocculation of dimorphic yeast Benjaminiella poitrasii is altered by modulation of NAD-glutamate dehydrogenase. Bioresour Technol 101:1393–1395

    Article  CAS  PubMed  Google Scholar 

  • Jungblut PR, Holzhütter HG, Apweiler R, Schlüter H (2008) The speciation of the proteome. Chem Cen J 2:16–26

    Article  Google Scholar 

  • König S, Spinka M, Kutter S (2009) Allosteric activation of pyruvate decarboxylases. A never-ending story? J Mol Catal B Enzym 61:100–110

    Article  Google Scholar 

  • Lee BN, Elion EA (1999) The MAPKKK Ste11 regulates vegetative growth through a kinase cascade of shared signaling components. Proc Natl Acad Sci USA 96:12679–12684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lima G, Arru S, De Curtis F, Arras G (1999) Influence of antagonist, host fruit and pathogen on the biological control of postharvest fungal diseases by yeasts. J Ind Microbiol Biotechnol 23:223–229

    Article  CAS  Google Scholar 

  • Liu X, Nie X, Ding Y, Chen J (2010) Asc1, a WD-repeat protein, is required for hyphal development and virulence in Candida albicans. Acta Biochim Biophys Sin (Shanghai) 42:793–800

    Article  CAS  Google Scholar 

  • Lorenz MC, Cutler NS, Heitman J (2000) Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae. Mol Biol Cell 11:183–199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maidan MM, Thevelein JM, Van Dijck P (2005) Carbon source induced yeast-to-hypha transition in Candida albicans is dependent on the presence of amino acids and on the G-protein-coupled receptor Gpr1. Biochem Soc Trans 33:291–293

    Article  CAS  PubMed  Google Scholar 

  • Monteoliva L, Martinez-Lopez R, Pitarch A, Hernandez ML, Serna A, Nombela C, Albar AP, Gil C (2011) Quantitative proteome and acidic subproteome profiling of Candida albicans Yeast-to Hypha Transition. J Proteome Res 10:502–517

    Article  CAS  PubMed  Google Scholar 

  • Moraes Nicola A, Vieira Andrade R, Silva-Pereira I (2005) Molecular chaperones in the Paracoccidioides brasiliensis transcriptome. Genet Mol Res 4:346–357

    Google Scholar 

  • Olivera-Couto A, Aguila PS (2012) Eisosomes and plasma membrane organization. Mol Genet Genomics 287:607–620

    Article  CAS  PubMed  Google Scholar 

  • Pan X, Harashima T, Heitman J (2000) Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae. Curr Opin Microbiol 3:567–572

    Article  CAS  PubMed  Google Scholar 

  • Sanna ML, Zara S, Zara G, Migheli Q, Budroni M, Mannazzu I (2012) Pichia fermentans dimorphic changes depend on the nitrogen source. Fungal Biol 116:769–777

    Article  CAS  PubMed  Google Scholar 

  • Schlüter H, Apweiler R, Holzhütter HG, Jungblut PR (2009) finding one’s way in proteomics: a protein species nomenclature. Chem Cen J 3:11–21

    Article  Google Scholar 

  • Sharov AA, Dudekula DB, Ko MS (2005) A web-based tool for principal component and significance analysis of microarray data. Bioinformatics 21:2548–2549

    Article  CAS  PubMed  Google Scholar 

  • Tylicki A, Siemieniuk M (2011) Thiamine and its derivatives in the regulation of cell metabolism. Postep Hig Med Dosw 65:447–469

    Article  Google Scholar 

  • Van Hemert MJ, Steensma YH, van Heusden GPH (2001) 14-3-3- proteins: key regulators of cell division, signaling and apoptosis. Bioassay 23:936–946

    Article  Google Scholar 

  • Vizcaino JA, Cote RG, Csordas A, Dianes JA, Fabregat A, Foster JM, Griss J, Alpi E, Birim M, Contell J, O’Kelly G, Schoenegger A, Ovelleiro D, Perez-Riverol Y, Reisinger F, Rios D, Wang R, Hermjakob H (2013) The Proteomics Identifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res 41(D1):D1063–D1069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vizcaíno JA, Deutsch EW, Wang R, Csordas A, Reisinger F, Ríos D, Dianes JA, Sun Z, Farrah T, Bandeira N, Binz PA, Xenarios I, Eisenacher M, Mayer G, Gatto L, Campos A, Chalkley RJ, Kraus HJ, Albar JP, Martinez-Bartolomé S, Apweiler R, Omenn GS, Martens L, Jones AR, Hermjakob H (2014) ProteomeXchange provides globally co-ordinated proteomics data submission and dissemination. Nature Biotechnol 30(3):223–226

    Article  Google Scholar 

  • Wisniewski ME, Wilson CL (1992) Biological control of postharvest diseases of fruits and vegetables. Recent Adv Hortsci 27:94–98

    Google Scholar 

  • Zaragoza O, Gancedo JM (2000) Pseudohyphal growth is induced in Saccharomyces cerevisiae by a combination of stress and cAMP signalling. Antonie Van Leeuwenhoek 78:187–194

    Article  CAS  PubMed  Google Scholar 

  • Zurita-Martinez SA, Cardenas ME (2005) Tor and cyclic AMP-protein kinase A: two parallel pathways regulating expression of genes required for cell growth. Eukaryot Cell 4:63–71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Stefano Fiori for carrying out the experiments on apple and peach fruits. This work has been granted by Ministry of Instruction and Research (MIUR) of Italy by PRIN07 project: evaluation of new risk factors associated with the utilisation of microbial antagonists.

Conflict of interest

The authors declare that they have no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biancaelena Maserti.

Additional information

Handling Editor: P. R. Jungblut.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17083 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maserti, B., Podda, A., Giorgetti, L. et al. Proteome changes during yeast-like and pseudohyphal growth in the biofilm-forming yeast Pichia fermentans . Amino Acids 47, 1091–1106 (2015). https://doi.org/10.1007/s00726-015-1933-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-1933-1

Keywords

Navigation