Skip to main content

Advertisement

Log in

Role of polyamines in hypertrophy and terminal differentiation of osteoarthritic chondrocytes

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Polyamines are naturally occurring, positively charged polycations which are able to control several cellular processes in different cell types, by interacting with negatively charged compounds and structures within the living cell. Functional genomics in rodents targeting key biosynthetic or catabolic enzymes have revealed a series of phenotypic changes, many of them related to human diseases. Several pieces of evidence from the literature point at a role of polyamines in promoting chondrocyte differentiation, a process which is physiological in growth plate maturation or fracture healing, but has pathological consequences in articular chondrocytes, programmed to keep a maturational arrested state. Inappropriate differentiation of articular chondrocytes results in osteoarthritis. Thus, we have studied the effects of exogenously added spermine or spermidine in chondrocyte maturation recapitulated in 3D cultures, to tease out the effects on gene and protein expression of key chondrogenesis regulatory transcription factors, markers and effectors, as well as their posttranscriptional regulation. The results indicate that both polyamines are able to increase the rate and the extent of chondrogenesis, with enhanced collagen 2 deposition and remodeling with downstream generation of collagen 2 bioactive peptides. These were able to promote nuclear localization of RUNX-2, the pivotal transcription factor in chondrocyte hypertrophy and osteoblast generation. Indeed, samples stimulated with polyamines showed an enhanced mineralization, along with increased caspase activity, indicating increased chondrocyte terminal differentiation. In conclusion these results indicate that the polyamine pathway can represent a potential target to control and correct chondrocyte inappropriate maturation in osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AR-S:

Alizarin red-S

DDR:

Discoidin domain receptors

DFMO:

α-Difluoromethylornithine

ECM:

Extra-cellular matrix

FBS:

Fetal bovine serum

GAG:

Glycosaminoglycans

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

KD:

Knockdown

MMP:

Matrix metalloproteinase

OA:

Osteoarthritis

ODC:

Ornithine decarboxylase

PCR:

Polymerase chain reaction

PTH:

Parathormone

References

  • Aeschlimann D, Wetterwald A, Fleisch H, Paulsson M (1993) Expression of tissue transglutaminase in skeletal tissues correlates with events of terminal differentiation of chondrocytes. J Cell Biol 120(6):1461–1470

    Article  PubMed  CAS  Google Scholar 

  • Agostinelli E, Tempera G, Molinari A, Salvi M, Battaglia V, Toninello A, Arancia G (2007) The physiological role of biogenic amines redox reactions in mitochondria. New perspectives in cancer therapy. Amino acids 33(2):175–187

    Article  PubMed  CAS  Google Scholar 

  • Bachrach U (2005) Naturally occurring polyamines: interaction with macromolecules. Curr Protein Pept Sci 6(6):559–566

    Article  PubMed  CAS  Google Scholar 

  • Borzi RM, Mazzetti I, Marcu KB, Facchini A (2004) Chemokines in cartilage degradation. Clin Orthop Relat Res 427 Suppl:S53–S61

    Article  PubMed  Google Scholar 

  • Borzi RM, Olivotto E, Pagani S, Vitellozzi R, Neri S, Battistelli M, Falcieri E, Facchini A, Flamigni F, Penzo M, Platano D, Santi S, Facchini A, Marcu KB (2010) Matrix metalloproteinase 13 loss associated with impaired extracellular matrix remodeling disrupts chondrocyte differentiation by concerted effects on multiple regulatory factors. Arthritis Rheum 62(8):2370–2381

    Article  PubMed  CAS  Google Scholar 

  • Casero RA, Pegg AE (2009) Polyamine catabolism and disease. Biochem J 421(3):323–338

    Article  PubMed  CAS  Google Scholar 

  • Cetrullo S, Facchini A, Stanic I, Tantini B, Pignatti C, Caldarera CM, Flamigni F (2010) Difluoromethylornithine inhibits hypertrophic, pro-fibrotic and pro-apoptotic actions of aldosterone in cardiac cells. Amino Acids 38(2):525–531

    Article  PubMed  CAS  Google Scholar 

  • Drissi H, Zuscik M, Rosier R, O’Keefe R (2005) Transcriptional regulation of chondrocyte maturation: potential involvement of transcription factors in OA pathogenesis. Mol Aspects Med 26(3):169–179

    Article  PubMed  CAS  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498

    Article  PubMed  CAS  Google Scholar 

  • Facchini A, Borzi RM, Flamigni F (2005a) Induction of ornithine decarboxylase in T/C-28a2 chondrocytes by lysophosphatidic acid: signaling pathway and inhibition of cell proliferation. FEBS Lett 579(13):2919–2925

    Article  PubMed  CAS  Google Scholar 

  • Facchini A, Borzi RM, Marcu KB, Stefanelli C, Olivotto E, Goldring MB, Facchini A, Flamigni F (2005b) Polyamine depletion inhibits NF-kappaB binding to DNA and interleukin-8 production in human chondrocytes stimulated by tumor necrosis factor-alpha. J Cell Physiol 204(3):956–963

    Article  PubMed  CAS  Google Scholar 

  • Flamigni F, Faenza I, Marmiroli S, Stanic I, Giaccari A, Muscari C, Stefanelli C, Rossoni C (1997) Inhibition of the expression of ornithine decarboxylase and c-Myc by cell-permeant ceramide in difluoromethylornithine-resistant leukaemia cells. Biochem J 324(Pt 3):783–789

    PubMed  CAS  Google Scholar 

  • Flamigni F, Facchini A, Capanni C, Stefanelli C, Tantini B, Caldarera CM (1999) p44/42 mitogen-activated protein kinase is involved in the expression of ornithine decarboxylase in leukaemia L1210 cells. Biochem J 341(Pt 2):363–369

    Article  PubMed  CAS  Google Scholar 

  • Flamigni F, Stanic I, Facchini A, Cetrullo S, Tantini B, Borzi RM, Guarnieri C, Caldarera CM (2007) Polyamine biosynthesis as a target to inhibit apoptosis of non-tumoral cells. Amino Acids 33(2):197–202

    Article  PubMed  CAS  Google Scholar 

  • Furumitsu Y, Yukioka K, Kojima A, Yukioka M, Shichikawa K, Ochi T, Matsui-Yuasa I, Otani S, Nishizawa Y, Morii H (1993) Levels of urinary polyamines in patients with rheumatoid arthritis. J Rheumatol 20(10):1661–1665

    PubMed  CAS  Google Scholar 

  • Gauci SJ, Golub SB, Tutolo L, Little CB, Sims NA, Lee ER, Mackie EJ, Fosang AJ (2008) Modulating chondrocyte hypertrophy in growth plate and osteoarthritic cartilage. J Musculoskelet Neuronal Interact 8(4):308–310

    PubMed  CAS  Google Scholar 

  • Gerner EW, Meyskens FL Jr (2004) Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4(10):781–792

    Article  PubMed  CAS  Google Scholar 

  • Goldring MB, Tsuchimochi K, Ijiri K (2006) The control of chondrogenesis. J Cell Biochem 97(1):33–44

    Article  PubMed  CAS  Google Scholar 

  • Higashikawa A, Saito T, Ikeda T, Kamekura S, Kawamura N, Kan A, Oshima Y, Ohba S, Ogata N, Takeshita K, Nakamura K, Chung UI, Kawaguchi H (2009) Identification of the core element responsive to runt-related transcription factor 2 in the promoter of human type X collagen gene. Arthritis Rheum 60(1):166–178

    Article  PubMed  CAS  Google Scholar 

  • Homma R, Mase A, Toida T, Kashiwagi K, Igarashi K (2005) Modulation of blood coagulation and fibrinolysis by polyamines in the presence of glycosaminoglycans. Int J Biochem Cell Biol 37(9):1911–1920

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Baud V, Oga T, Kim KI, Yoshida K, Karin M (2001) IKKalpha controls formation of the epidermis independently of NF-kappaB. Nature 410(6829):710–714

    Article  PubMed  CAS  Google Scholar 

  • Hurst-Kennedy J, Boyan BD, Schwartz Z (2009) Lysophosphatidic acid signaling promotes proliferation, differentiation, and cell survival in rat growth plate chondrocytes. Biochim Biophys Acta 1793(5):836–846

    Article  PubMed  CAS  Google Scholar 

  • Jonason JH, Xiao G, Zhang M, Xing L, Chen D (2009) Post-translational Regulation of Runx2 in Bone and Cartilage. J Dent Res 88(8):693–703

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi H (2008) Endochondral ossification signals in cartilage degradation during osteoarthritis progression in experimental mouse models. Mol Cells 25(1):1–6

    PubMed  CAS  Google Scholar 

  • Lentini A, Abbruzzese A, Caraglia M, Marra M, Beninati S (2004) Protein-polyamine conjugation by transglutaminase in cancer cell differentiation: review article. Amino Acids 26(4):331–337

    Article  PubMed  CAS  Google Scholar 

  • Marcu KB, Otero M, Olivotto E, Borzi RM, Goldring MB (2010) NF-kappaB signaling: multiple angles to target OA. Curr Drug Targets 11(5):599–613

    Article  PubMed  CAS  Google Scholar 

  • Olivotto E, Vitellozzi R, Fernandez P, Falcieri E, Battistelli M, Burattini S, Facchini A, Flamigni F, Santi S, Facchini A, Borzi RM (2007) Chondrocyte hypertrophy and apoptosis induced by GROalpha require three-dimensional interaction with the extracellular matrix and a co-receptor role of chondroitin sulfate and are associated with the mitochondrial splicing variant of cathepsin B. J Cell Physiol 210(2):417–427

    Article  PubMed  CAS  Google Scholar 

  • Olivotto E, Borzi RM, Vitellozzi R, Pagani S, Facchini A, Battistelli M, Penzo M, Li X, Flamigni F, Li J, Falcieri E, Facchini A, Marcu KB (2008) Differential requirements for IKKalpha and IKKbeta in the differentiation of primary human osteoarthritic chondrocytes. Arthritis Rheum 58(1):227–239

    Article  PubMed  CAS  Google Scholar 

  • Pegg AE (2009) Mammalian polyamine metabolism and function. IUBMB Life 61(9):880–894

    Article  PubMed  CAS  Google Scholar 

  • Phornphutkul C, Wu KY, Yang X, Chen Q, Gruppuso PA (2004) Insulin-like growth factor-I signaling is modified during chondrocyte differentiation. J Endocrinol 183(3):477–486

    Article  PubMed  CAS  Google Scholar 

  • Pucci B, Adams CS, Fertala J, Snyder BC, Mansfield KD, Tafani M, Freeman T, Shapiro IM (2007) Development of the terminally differentiated state sensitizes epiphyseal chondrocytes to apoptosis through caspase-3 activation. J Cell Physiol 210(3):609–615

    Article  PubMed  CAS  Google Scholar 

  • Rath NC, Reddi AH (1981) Changes in polyamines, RNA synthesis, and cell proliferation during matrix-induced cartilage, bone, and bone marrow development. Dev Biol 82(2):211–216

    Article  PubMed  CAS  Google Scholar 

  • Seiler N, Raul F (2005) Polyamines and apoptosis. J Cell Mol Med 9(3):623–642

    Article  PubMed  CAS  Google Scholar 

  • Stanic I, Facchini A, Borzi RM, Vitellozzi R, Stefanelli C, Goldring MB, Guarnieri C, Facchini A, Flamigni F (2006) Polyamine depletion inhibits apoptosis following blocking of survival pathways in human chondrocytes stimulated by tumor necrosis factor-alpha. J Cell Physiol 206(1):138–146

    Article  PubMed  CAS  Google Scholar 

  • Stanic I, Cetrullo S, Facchini A, Stefanelli C, Borzi RM, Tantini B, Guarnieri C, Caldarera CM, Flamigni F (2008) Effect of the polyamine analogue N(1), N(11)-diethylnorspermine on cell survival and susceptibility to apoptosis of human chondrocytes. J Cell Physiol 216(1):153–161

    Article  PubMed  CAS  Google Scholar 

  • Stanic I, Facchini A, Borzi RM, Stefanelli C, Flamigni F (2009) The polyamine analogue N1, N11-diethylnorspermine can induce chondrocyte apoptosis independently of its ability to alter metabolism and levels of natural polyamines. J Cell Physiol 219(1):109–116

    Article  PubMed  CAS  Google Scholar 

  • Stefanelli C, Pignatti C, Tantini B, Fattori M, Stanic I, Mackintosh CA, Flamigni F, Guarnieri C, Caldarera CM, Pegg AE (2001) Effect of polyamine depletion on caspase activation: a study with spermine synthase-deficient cells. Biochem J 355(Pt 1):199–206

    Article  PubMed  CAS  Google Scholar 

  • Takano T, Takigawa M, Suzuki F (1981) Role of polyamines in expression of the differentiated phenotype of chondrocytes in culture. Med Biol 59(5–6):423–427

    PubMed  CAS  Google Scholar 

  • Takano T, Takigawa M, Suzuki F (1983) Role of polyamines in expression of the differentiated phenotype of chondrocytes: effect of DL-alpha-hydrazino-delta-aminovaleric acid (DL-HAVA), an inhibitor of ornithine decarboxylase, on chondrocytes treated with parathyroid hormone. J Biochem 93(2):591–598

    PubMed  CAS  Google Scholar 

  • Takigawa M, Takano T, Suzuki F (1981) Effects of parathyroid hormone and cyclic AMP analogues on the activity of ornithine decarboxylase and expression of the differentiated phenotype of chondrocytes in culture. J Cell Physiol 106(2):259–268

    Article  PubMed  CAS  Google Scholar 

  • Tchetina EV, Squires G, Poole AR (2005) Increased type II collagen degradation and very early focal cartilage degeneration is associated with upregulation of chondrocyte differentiation related genes in early human articular cartilage lesions. J Rheumatol 32(5):876–886

    PubMed  CAS  Google Scholar 

  • van den Berg WB (2011) Osteoarthritis year 2010 in review: pathomechanisms. Osteoarthritis Cartilage 19(4):338–341

    Article  PubMed  Google Scholar 

  • van der Kraan PM, van den Berg WB (2008) Osteoarthritis in the context of ageing and evolution. Loss of chondrocyte differentiation block during ageing. Ageing Res Rev 7(2):106–113

    Article  PubMed  Google Scholar 

  • Vittur F, Lunazzi G, Moro L, Stagni N, de Bernard B, Moretti M, Stanta G, Bacciottini F, Orlandini G, Reali N et al (1986) A possible role for polyamines in cartilage in the mechanism of calcification. Biochim Biophys Acta 881(1):38–45

    Article  PubMed  CAS  Google Scholar 

  • Vogel WF, Abdulhussein R, Ford CE (2006) Sensing extracellular matrix: an update on discoidin domain receptor function. Cell Signal 18(8):1108–1116

    Article  PubMed  CAS  Google Scholar 

  • Wang A, Martin JA, Lembke LA, Midura RJ (2000) Reversible suppression of in vitro biomineralization by activation of protein kinase A. J Biol Chem 275(15):11082–11091

    Article  PubMed  CAS  Google Scholar 

  • Wolos JA, Logan DE, Bowlin TL (1990) Methylacetylenic putrescine (MAP), an inhibitor of polyamine biosynthesis, prevents the development of collagen-induced arthritis. Cell Immunol 125(2):498–507

    Article  PubMed  CAS  Google Scholar 

  • Yang KG, Saris DB, Geuze RE, van Rijen MH, van der Helm YJ, Verbout AJ, Creemers LB, Dhert WJ (2006) Altered in vitro chondrogenic properties of chondrocytes harvested from unaffected cartilage in osteoarthritic joints. Osteoarthritis Cartilage 14(6):561–570

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Università di Bologna (R.F.O.), Istituto Ortopedico Rizzoli, MIUR (PRIN and FIRB), Carisbo Foundation and Fondi cinque per mille, Ministero della Salute, Italy. We acknowledge the valuable contribution of Prof. Kenneth B. Marcu, Stony Brook University, USA, to support us in the retroviral delivery of IKKα shRNA to primary chondrocytes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Flamigni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Facchini, A., Borzì, R.M., Olivotto, E. et al. Role of polyamines in hypertrophy and terminal differentiation of osteoarthritic chondrocytes. Amino Acids 42, 667–678 (2012). https://doi.org/10.1007/s00726-011-1041-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1041-9

Keywords

Navigation