Skip to main content
Log in

Polyamines modulate nitrate reductase activity in wheat leaves: involvement of nitric oxide

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

In the present work, the effect of polyamines (PAs) on nitrate reductase (NR) activity was studied in wheat leaves exposed to exogenously added PAs while assessing the nitric oxide (NO) involvement in the regulation of the enzyme activity. A biphasic response was observed along the time of treatment using 0.1 mM of putrescine (Put), spermidine (Spd) or spermine (Spm). At 3 h, Spd and Spm significantly reduced NR activity by 29 or 35%, respectively, whereas at 6 h, the activity of the enzyme decreased by an average of 25%. At 21 h, Put increased NR activity by 63%, while Spd and Spm elevated the enzyme activity by 114%. NR activity, that was reduced by 0.1 mM Spm at 3 and 6 h, returned almost to control values when c-PTIO (an NO scavenger) was used, confirming that NO was involved in the inhibition of NR activity. Nitric oxide was also mediating the PA-increase of the enzyme activity at longer incubation times, evidenced when the raise in NR activity produced by 0.1 mM Spm at the longest incubation time returned to the value of the control in the presence of cPTIO. Neither the protein expression nor the nitrate content were modified by PAs treatments. The involvement of PAs and NO in the regulation of NR activity is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Put:

Putrescine

Spd:

Spermidine

Spm:

Spermine

SNP:

Sodium nitroprusside

NR:

Nitrate reductase

l-Arg:

l-Arginine

d-Arg:

d-Arginine

References

  • Agostinelli E, Marques MPM, Calheiros R, Gil FPSC, Tempera G, Viceconte N, Battaglia V, Grancara S, Toninello A (2010) Polyamines: fundamental characters in chemistry and biology. Amino Acids 38:393–403

    Article  PubMed  CAS  Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio A (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  Google Scholar 

  • Alvarez B, Radi R (2003) Peroxynitrite reactivity with amino acids and proteins. Amino Acids 25:295–311

    Article  PubMed  CAS  Google Scholar 

  • Athwal GS, Huber SC (2002) Divalent cations and polyamines bind to loop 8 of 14–3-3 proteins, modulating their interaction with phosphorylated nitrate reductase. Plant J 29:119–129

    Article  PubMed  CAS  Google Scholar 

  • Bagni N, Tassoni A (2001) Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 20:301–317

    Article  PubMed  CAS  Google Scholar 

  • Bartesaghi S, Ferrer-Sueta G, Peluffo G, Valez V, Zhang H, Kalyanaraman B, Radi R (2007) Protein tyrosine nitration in hydrophilic and hydrophobic environments. Amino Acids 32:501–515

    Article  PubMed  CAS  Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39

    Article  PubMed  CAS  Google Scholar 

  • Besson-Bard A, Gravot A, Richaud P, Auroy P, Duc C, Gaymard F et al (2009) Nitric oxide contributes to cadmium toxicity in Arabidopsis thaliana by promoting cadmium accumulation in roots and by upregulating genes related to iron uptake. Plant Physiol 4:252–254

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bridges D, Moorhead GBG (2005) 14-3-3 Proteins: a number of functions for a numbered protein. Sci STKE 2005:re10

  • Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Cataldo DA, Haroon M, Schrader LE, Young VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Comm Soil Sci Plant Anal 6:71–80

    Article  CAS  Google Scholar 

  • Cona A, Rea G, Angelini R et al (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11:80–88

    Article  PubMed  CAS  Google Scholar 

  • Correa-Aragunde N, Graziano M, Chevalier C, Lamattina L (2006) Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato. J Exp Bot 57:581–588

    Article  PubMed  CAS  Google Scholar 

  • Crawford NM (2006) Plant nitric oxide synthase: back to square one. Trends Plant Sci 11:526–527

    Article  CAS  Google Scholar 

  • Du S, Zhang Y, Lin XY, Wang Y, Tang C (2008) Regulation of nitrate reductase by nitric oxide in Chinese cabbage pakchoi (Brassica chinensis L.). Plant Cell Environ 31:195–204

    PubMed  CAS  Google Scholar 

  • Flores T, Todd CD, Tovar-Mendez A, Dhanoa Preetinder K et al (2008) Arginase-negative mutants of Arabidopsis exhibit increased nitric oxide signalling in root development. Plant Physiol 147:1936–1946

    Article  PubMed  CAS  Google Scholar 

  • Flores-Pérez U, Sauret-Güeto S, Gas E, Jarvis P, Rodríguez-Concepción M (2008) A mutant impaired in the production of plastome-encoded proteins uncovers a mechanism for the homeostasis of isoprenoid biosynthetic enzymes in Arabidopsis plastids. Plant Cell 20:1303–1315

    Article  PubMed  Google Scholar 

  • Fuell C, Elliott KA, Hanfrey CC, Franceschetti M, Michael AJ (2010) Polyamine biosynthetic diversity in plants and algae. Plant Physiol Biochem 48:513–520

    Article  PubMed  CAS  Google Scholar 

  • Galston AW, Kaur-Sawhney R (1990) Polyamines in plant physiology. Plant Physiol 94:406–410

    Article  PubMed  CAS  Google Scholar 

  • Gao HJ, Yang HQ, Wang JX (2009) Arginine metabolism in roots and leaves of apple (Malus domestica Borkh.): the tissue-specific formation of both nitric oxide and polyamines. Sci Hortic 119:147–152

    Article  CAS  Google Scholar 

  • Garufi A, Visconti S, Camoni L, Aducci P (2007) Polyamines as physiological regulators of 14–3-3 Interaction with the plant plasma membrane H+-ATPase. Plant Cell Physiol 48:434–440

    Article  PubMed  CAS  Google Scholar 

  • Gas E, Flores-Pérez U, Sauret-Gueto S et al (2009) Hunting for plant nitric oxide synthase provides new evidence of a central role for plastids in nitric oxide metabolism. Plant Cell 21:18–23

    Article  PubMed  CAS  Google Scholar 

  • Groppa MD, Tomaro ML, Benavides MP (2007) Polyamines and heavy metal stress: the antioxidant behavior of spermine in cadmium- and copper-treated wheat leaves. Biometals 20:185–195

    Article  PubMed  CAS  Google Scholar 

  • Groppa MD, Rosales EP, Iannone MF, Benavides MP (2008) Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots. Phytochemistry 69:2609–2615

    Article  PubMed  CAS  Google Scholar 

  • Guo F-Q, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100–103

    Article  PubMed  CAS  Google Scholar 

  • Handa AK, Mattoo AK (2010) Differential and functional interactions emphasize the multiple roles of polyamines in plants. Plant Physiol Biochem 48:540–546

    Article  PubMed  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:1–32

    Google Scholar 

  • Igarashi K, Kashiwagi K (2000) Polyamines: mysterious modulators of cellular function. Biochem. Biophys Res Commun 271:559–564

    Article  CAS  Google Scholar 

  • Jin CW, Du ST, Zhang YS, Lin XY, Tang CX (2009) Differential regulatory role of nitric oxide in mediating nitrate reductase activity in roots of tomato (Solanum lycocarpum). Ann Bot 104:9–17

    Article  PubMed  CAS  Google Scholar 

  • Kaiser WM, Weiner H, Huber SC (1999) Nitrate reductase in higher plants: a case study for transduction of environmental stimuli into control of catalytic activity. Physiol Plant 105:385–390

    Article  CAS  Google Scholar 

  • Kaiser WM, Weiner H, Kandlbinder A, Tsai CB, Rockel P, Sonoda M, Planchet E (2002) Modulation of nitrate reductase: some new insights, an unusual case and a potentially important side reaction. J Exp Bot 53:875–882

    Article  PubMed  CAS  Google Scholar 

  • Kakkar RK, Nagar PK, Ahuja PS, Rai VK (2000) Polyamines and plant morphogenesis. Physiol Plant 43:1–11

    CAS  Google Scholar 

  • Kumar A, Taylor M, Altabella T, Tiburcio AF (1997) Recent advances in polyamine research. Trends Plant Sci 2:124–130

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lamotte O, Gould K, Lecourieux D, Sequeira-Legrand A, Lebun-Garcia A, Durner J, Pugin A, Wendehenne D (2004) Analysis of nitric oxide signalling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiol 135:516–529

    Article  PubMed  CAS  Google Scholar 

  • Lea US, Leydecker MT, Quillere I, Meyer C, Lillo C (2006) Posttranslational regulation of nitrate reductase strongly affects the levels of free amino acids and nitrate, whereas transcriptional regulation has only minor influence. Plant Physiol 140:1085–1094

    Article  PubMed  CAS  Google Scholar 

  • Lillo C, Meyer C, Lea US, Provan F, Oltedal S (2004) Mechanism and importance of post-translational regulation of nitrate reductase. J Exp Bot 55:1275–1282

    Article  PubMed  CAS  Google Scholar 

  • Meyer C, Lea US, Provan F, Kaiser WM, Lillo C (2005) Is nitrate reductase a major player in the plant NO (nitric oxide) game? Photosyn Res 83:181–189

    Article  PubMed  CAS  Google Scholar 

  • Moreau M, Lee GI, Wang Y, Crane BR, Klessig DF (2008) AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitric-oxide synthase. J Biol Chem 283:32957–32967

    Article  PubMed  CAS  Google Scholar 

  • Moreau M, Lindermayr C, Durner J, Klessig DF (2010) NO synthesis and signalling in plants—where do we stand? Physiol Plant 138:372–383

    Article  PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Hancock J (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    Article  CAS  Google Scholar 

  • Provan F, Aksland LM, Meyer C, Lillo C (2000) Deletion of the nitrate reductase N-terminal domain still allows binding of 14-3-3 proteins but affects their inhibitory properties. Plant Physiol 123:757–764

    Article  PubMed  CAS  Google Scholar 

  • Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitrite oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110

    Article  PubMed  CAS  Google Scholar 

  • Rosales EP, Iannone MF, Groppa MD, Benavides MP (2011) Nitric oxide inhibits nitrate reductase activity in wheat leaves. Plant Physiol Biochem 49:124–130

    Article  PubMed  CAS  Google Scholar 

  • Savidov NA, Lovov NP, Sagic C, Lips SH (1997) Molybdenum cofactor biosynthesis in two barley (Hordeum vulgare L.) genotypes as affected by nitrate in the tissue and in the growth medium. Plant Sci 122:51–59

    Article  CAS  Google Scholar 

  • Shen W, Huber SC (2006) Polycations globally enhance binding of 14-3-3 omega to target proteins in spinach leaves. Plant Cell Physiol 47:764–771

    Article  PubMed  CAS  Google Scholar 

  • Shi K, Ding X-T, Dong D-K, Zhou Y-H, Yu JQ (2008) Putrescine enhancement of tolerance to root-zone hypoxia in Cucumis sativus: a role for increased nitrate reduction. Funct Plant Biol 35:337–345

    Article  CAS  Google Scholar 

  • Slocum RD, Flores HE (1991) Biochemistry and physiology of polyamines in plants. CRC Press, Boca Raton

    Google Scholar 

  • Smith BN, Meeuse BJD (1966) Production of volatile amines in some Arum lily species. Plant Physiol 41:343–347

    Article  PubMed  CAS  Google Scholar 

  • Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Kakehi JI (2010) Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann Bot 105:1–6

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Berberich T, Miyazaki A, Seo S, Ohashi Y, Kusano T (2003) Spermine signalling in tobacco: activation of mitogen-activated protein kinases by spermine is mediated through mitochondrial dysfunction. Plant J 36:820–829

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Uehara Y, Berberich T, Ito A, Saitoh H, Miyazaki A, Terauchi R, Kusano T (2004) A subset of hypersensitive response marker genes, including HSR203J, is the downstream target of a spermine signal transduction pathway in tobacco. Plant J 40:586–595

    Article  PubMed  CAS  Google Scholar 

  • Tun NN, Santa-Catarina C, Begum T et al (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354

    Article  PubMed  CAS  Google Scholar 

  • Wendehenne D, Pugin A, Klessig DF, Durner J (2001) Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci 6:177–183

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto-Katou A, Katou S, Yoshioka H, Doke N, Kawakita K (2006) Nitrate reductase is responsible for elicitin-induced nitric oxide production in Nicotiana benthamiana. Plant Cell Physiol 47:726–735

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468:89–92

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 4:128–129

    Article  PubMed  Google Scholar 

  • Yaneva IA, Hoffmann GW, Tischner R (2002) Nitrate reductase from winter wheat leaves is activated at low temperature via protein dephosphorylation. Physiol Plant 114:65–72

    Article  PubMed  CAS  Google Scholar 

  • Zemojtel T, Fröhlich A, Palmieri MC et al (2006) Plant nitric oxide synthase: a never-ending story? Trends Plant Sci 11:524–525

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Buenos Aires (Project B017) and CONICET (PIP 097). M.P. Benavides and M.D. Groppa are researchers from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). E.P. Rosales and M.F. Iannone have fellowships from CONICET. We thank Dr. Steven Huber, University of Illinois, for providing the NR antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Patricia Benavides.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosales, E.P., Iannone, M.F., Groppa, M.D. et al. Polyamines modulate nitrate reductase activity in wheat leaves: involvement of nitric oxide. Amino Acids 42, 857–865 (2012). https://doi.org/10.1007/s00726-011-1001-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1001-4

Keywords

Navigation